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[1] We have modeled the nucleation and isothermal growth of bubbles in dacite from the 1912 Plinian eruption
of Novarupta, Alaska. Bubble growth calculations account for the exsolution of H2O and CO2, beginning
with bubble nucleation and ending when bubble sizes reproduced the observed size distribution of vesicles
in Novarupta pumice clasts. Assuming classical nucleation theory, bubbles nucleated with a diameter of the
order of 10!8 m and grew to sizes ranging from 10!6 m to greater than 10!3 m, the typical range of vesicle
sizes found in Novarupta pumice. The smallest vesicles in Novarupta pumices are also the most abundant
and bubbles with radii of 10!6 m to 10!5 m comprise almost 90% of the entire bubble population. We find
that these bubbles must have nucleated and grown to their final size within a few 100 milliseconds. Despite
these extremely fast growth rates, the pressures of exsolved volatiles contained within the bubbles remained
high, up to about 107 Pa in excess of ambient pressure. Assuming a closed-system, the potential energy of
these compressed volatiles was sufficient to cause magma fragmentation, even though only a fraction of
the pre-eruptive volatiles had exsolved. Unless the matrix glasses of Novarupta pyroclasts retains a large
fraction of pre-eruptive volatiles, the majority of magmatic volatiles (80–90%) was likely lost by open-system
degassing between magma fragmentation and quenching.
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1. Introduction

[2] Styles of volcanic eruptions range from effusive
to highly explosive. Because of their tremendous
destructiveness, the latter pose a considerable threat to
human life, economies and the environment. Because

magma ascent is inaccessible to direct observation,
eruptive products, pyroclasts in the case of explosive
eruptions, provide the best direct record of eruptive
conditions. In particular bubbles, which are pre-
served as vesicles within these pyroclasts, have been
intensely studied with the objective of constraining
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the conditions of magma ascent [e.g., Sparks and
Brazier, 1982; Mangan et al., 1993; Klug and
Cashman, 1994; Gardner et al., 1996; Klug and
Cashman, 1996; Mangan and Cashman, 1996;
Hammer et al., 1999; Blower et al., 2001a; Polacci
et al., 2001; Blower et al., 2002; Klug et al., 2002;
Polacci et al., 2003; Gaonac’h et al., 2003, 2005;
Polacci, 2005; Polacci et al., 2006a, 2009; Gurioli
et al., 2005; Polacci et al., 2006b; Adams et al.,
2006; Lautze and Houghton, 2007; Piochi et al.,
2008; Giachetti et al., 2010; Houghton et al., 2010;
Shea et al., 2010; Giachetti et al., 2011; Voltolini
et al., 2011].

[3] Our study is focused on the eruption dynamics
of Earth’s most voluminous volcanic eruption of
the 20th century, the Plinian eruption of Novarupta
on June 6–8, 1912 [Fierstein and Hildreth, 1992;
Hildreth and Fierstein, 2000]. We have constrained
magma ascent conditions during Episode III of
this eruption, by reconstructing the vesicle size dis-
tributions in pyroclasts from this episode, using
accurate modeling of diffusive bubble growth during
the exsolution of a mixed H2O and CO2 magmatic
volatile phase [Gonnermann and Manga, 2005].
The 1912 eruption of Novarupta is widely recog-
nized as an outstanding example of sustained Plinian
explosive volcanism. It has been the subject of a
century of intense study, resulting in a well-developed
tephrostratigraphy [Hildreth and Fierstein, 2012,
and references therein] and extensive textural anal-
ysis of air-fall deposits [Adams et al., 2006], as well
as thorough characterization of pre-eruptive magma
storage conditions [Hammer et al., 2002].

[4] The cause of explosive volcanism is the sudden
release and rapid expansion of a volatile (gas) phase.
During magma ascent the solubility of magmatic
volatiles, to a large extent H2O and CO2, decreases
as the confining pressure on the magma decreases.
Consequently, the melt becomes supersaturated in
volatiles, which results in the nucleation of bubbles
by the exsolution of magmatic volatiles (gases).
These bubbles will grow, due to diffusion of vola-
tiles from the melt and the expansion of the already
exsolved volatiles. During many explosive eruptions
bubbles cannot grow as fast as pressure decreases in
the surrounding melt by which they are transported
to the surface. This is a consequence of the strong
dependence of melt viscosity on the concentration
of dissolved H2O, which causes melt viscosity to
increase upon H2O exsolution. If the viscous time-
scale, which is approximately equal to the ratio of
melt viscosity to the excess pressure inside bubbles,

is larger than the time over which magma decom-
presses, then bubbles will not be able to grow fast
enough to expand and equilibrate with the ambient
pressure [Lensky et al., 2004]. Consequently, the
bubbles may be of considerably higher pressure
than the surrounding melt.

[5] If this bubble overpressure exceeds a certain
threshold [McBirney and Murase, 1970; Alidibirov,
1994; Zhang, 1999; Spieler et al., 2004a; Mueller
et al., 2008], or if it causes sufficiently high rates
of bubble growth [Dingwell, 1996; Papale, 1999],
the viscoelastic rheology of the melt will cause it
to fragment in a brittle manner. Fragmentation allows
the pressurized volatiles to escape from their con-
finement and expand explosively in volume. This
abrupt transition, from a continuous melt phase
with suspended bubbles, to an explosively expand-
ing gaseous flow with suspended magma fragments,
called pyroclasts, is sustained for hours during Pli-
nian eruptions. Pyroclasts are transported from their
depth of fragmentation into the Earth’s atmosphere,
at velocities of hundreds of meters per second, by
the rapidly expanding gases. When the pyroclasts
settle out of this Plinian eruption column, they form
aerially extensive pyroclastic air-fall deposits, with
potentially severe environmental and societal impacts.
Consequently, an understanding of the magmatic
conditions leading up to and after magma frag-
mentation is of key importance in the study of
explosive volcanism.

[6] A record of these conditions are the size distri-
bution and number density of vesicles in the erupted
pyroclasts. Number density is defined as number
of vesicles per unit volume of solid matrix, presum-
ably equivalent to the number of bubbles per unit
volume of melt, prior to quenching. A question of
fundamental importance is whether the ascending
magma traverses a region of extreme decompression
rates, of the order of 100 MPa s!1 [e.g., Toramaru,
1995, 1989, 2006]. It is unclear from experiments
if "100 MPa s!1 is a necessary requirement to
achieve the high bubble number densities observed
in pyroclasts [Mourtada-Bonnefoi and Laporte,
2004; Hamada et al., 2010; Gardner and Ketcham,
2011; Gonde et al., 2011; Nowak et al., 2011].
Relatively high rates of decompression are required to
outpace the diffusion of dissolved volatiles into
existing bubbles [e.g., Sparks, 1978; Proussevitch
et al., 1993; Lyakhovsky et al., 1996; Gardner
et al., 1999; Mourtada-Bonnefoi and Laporte, 2002,
2004; Lensky et al., 2004;Gonnermann and Manga,
2007], thereby driving the melt toward progres-
sively increasing supersaturation and increasing
rates of bubble nucleation. If at all, decompression
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rates of "100 MPa s!1 may only be plausible for a
very short duration and within a short distance of
the fragmentation depth, where viscosity may
increases considerably over short distances, due
to the exsolution of H2O [e.g.,Woods, 1995; Papale,
1999; Mastin, 2002; Koyaguchi, 2005; Massol
and Koyaguchi, 2005; Melnik et al., 2005]. For a
given flow rate, and assuming Newtonian rheology,
viscous resistance within the conduit requires
that pressure decreases concurrently. This so-called
frictional pressure loss can result in steep pressure
gradients and high rates of decompression. If the
latter outpaces the decrease in pressure within the
expanding bubbles, the resulting difference in pres-
sure between the interior of bubbles and the sur-
rounding melt may exceed the overpressure at which
magma will fragment [Alidibirov, 1994; Dingwell,
1996; Papale, 1999; Zhang, 1999; Spieler et al.,
2004a]. However, the buildup of overpressure may
be modulated or balanced by the development of
interconnected bubbles, amenable to gas loss from
the eruptingmagma by permeable gas flow [Burgisser
and Gardner, 2005; Mueller et al., 2008; Rust and
Cashman, 2011]. The objective of our study is to
constrain the rates of magma decompression required
to produce the vesicle size distributions in fall
deposits from Episode III of the 1912 Novarupta
eruption and to examine the relationship between
bubble nucleation, growth and fragmentation.

[7] Section 2 gives a brief summary of the 1912
Novarupta eruption, its deposits and the samples
modeled herein. In section 3 we provide a review of
the quantitative description of vesicles in pyroclasts.
It is followed by a discussion of bubble nucleation in
section 4, the modeling thereof, as well as a brief
synopsis of the role of surface tension in studies of
bubble nucleation and the associated uncertainties.
Section 5 presents the conceptual framework for
a new approach to the modeling of vesicle size
distributions, based on the modeling of diffusive
bubble growth, described in section 6, followed by a
step-by-step description of the model in section 7.
Finally, section 8 presents a discussion of the model
results, followed by conclusions in section 9.

2. Novarupta 1912

2.1. Eruption and Deposits
[8] The 1912 Novarupta eruption was the most
voluminous eruption of the twentieth century.
Because caldera collapse occurred 10 km from the
vent, eruption deposits have been well preserved

close to the vent. The explosive phase of the eruption
began on 6 June, 1912 and lasted for 60 hours, with
Plinian fall deposits and voluminous ignimbrites
deposited during parts of the eruption [e.g.,Hildreth,
1983; Fierstein and Hildreth, 1992; Hildreth and
Fierstein, 2000, 2012]. Based on tephrostrati-
graphic relations and eyewitness accounts, it appears
that there were two short breaks in the Plinian phase
of the eruption, one on the morning of 7 June and the
other in the evening of 8 June. Consequently, the
explosive phase of the eruption is subdivided into
three episodes, with inferred column heights of 26,
25, and 23 km respectively. Most of the ignimbrite
was deposited during Episode I, whereas Episodes II
and III predominantly formed Plinian fall deposits.
After the explosive phase, two episodes of dome
emplacement are designated as Episodes IV and V.

2.2. Pre-eruptive Volatile Content
and Pressure
[9] The erupted magmas are rhyolite (77–78 wt%
SiO2), dacite (63–68 wt% SiO2) and andesite (58–
63 wt% SiO2) [Hildreth and Fierstein, 2000]. Melt
inclusions in quartz phenocrysts of the Novarupta
rhyolite contain dissolved H2O concentrations
between 3.5 and 4.7 wt% and melt inclusions in
plagioclase phenocrysts in dacite contain between
2.2 and 3.1 wt% H2O [Lowenstern, 1993].

[10] The CO2 content of both rhyolites and dacites
is less than 50 ppm [Lowenstern, 1993; Wallace,
2005]. We focus our study on the 1912 Novarupta
dacite from Episode III. Using experimental phase
relations at H2O + CO2 fluid saturation, Hammer
et al. [2002] determined a H2O saturation pressure
of approximately 50 MPa at 850#C at a total pres-
sure of 50–150 MPa for the dacite. However, con-
centrations of less than 50 ppm CO2 in melt
inclusions, suggests relatively limited H2O under-
saturation, caused by the presence of a CO2-rich
vapor phase [Blundy et al., 2010]. An alternate
possibility suggested by Hammer et al. [2002] is
H2O undersaturation, due to a lack of H2O.

[11] The presence of CO2 can modulate the nucle-
ation rate of bubbles [Mourtada-Bonnefoi and
Laporte, 2002; Yamada et al., 2005; Larsen,
2008] and affect eruption dynamics [Papale and
Polacci, 1999], especially at shallow depths
[Burgisser et al., 2008]. In our model we, therefore,
focus on the dacite end-member suggested by
Hammer et al. [2002], which equilibrated at 850#C,
a H2O saturation pressure of 50 MPa, and a vapor
phase with 10 mole % of CO2.
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2.3. Existing Textural Analyses
of Novarupta Plinian Fall Pumices
[12] Adams et al. [2006] carried out a detailed
textural study of the 1912 Novarupta Plinian fall
deposits. They sampled and texturally characterized
dacite pumice clasts from Episodes II and III and
the modeling described herein builds upon this
analysis. Adams et al. [2006] obtained vesicle size
distributions through a two-dimensional analysis of
Scanning Electron Microscope (SEM) images from
polished thin sections for a subset of pumice clasts
of individual sample suites. Number densities of
vesicles were calculated for binned vesicle diameters
thus obtained and converted from two-dimensional
to three-dimensional number densities using the
method of Sahagian and Proussevitch [1998]. This
methodology may result in some bias, due to the
inherent spherical assumption. However, given the
present limitation associated with the estimation of
VSDs from three-dimensional Computed Tomography
(CT) scans, the method employed by Adams et al.
[2006] provides the most robust estimate of VSDs for
the Novarupta samples [Giachetti et al., 2011].

2.4. Qualitative Interpretation of Novarupta
Plinian Fall Pumices
[13] Similarities in bubble number density, Nm,
and vesicle size distributions, n(a), of Novarupta
pyroclasts have been interpreted to signify similar
magma ascent conditions [Adams et al., 2006].
Near-unimodal vesicle volume fractions, with a
relatively invariant mode throughout episodes II and
III, are thought to indicate that magma ascent con-
ditions remained relatively constant, with bubble
nucleation and growth occurring over a short time
interval [Toramaru, 1989, 1990; Lyakhovsky et al.,
1996; Gardner et al., 1999; Adams et al., 2006].
At the same time, the abundance of small vesicles
are thought to indicate continuous nucleation until
the late stages of magma ascent [Adams et al.,
2006], presumably associated with homogenous
nucleation at large supersaturations [Hurwitz and
Navon, 1994; Gardner et al., 1999; Mourtada-
Bonnefoi and Laporte, 1999; Mangan and Sisson,
2000]. Because the distribution n(a) is consider-
ably more skewed toward small vesicles than
would be expected for steady state nucleation and
growth [Lyakhovsky et al., 1996; Blower et al.,
2001b; Klug et al., 2002; Adams et al., 2006], the
bubble nucleation rate may have increased with
time, perhaps modulated by bubble coalescence
[Gaonac’h et al., 1996; Simakin et al., 1999;
Mangan et al., 2004].

2.5. Modeled Samples
[14] We model three Plinian dacite fall clasts from
Episode III, Unit G, sampling site 94-Z, sample
No. 22 [Adams et al., 2006]. They are named 94-Z-
22-28, 94-Z-22-24 and 94-Z-22-8 and represent
high, modal and low-density clasts with a vesicu-
larity of 75.2%, 63.5% and 51.7%, respectively
[see Adams et al., 2006, Figure 8]. Bubble number
density ranges between"1014 and"1015 m!3, with
median vesicle diameter between 45 and 74 mm for
vesicles ranging in size between 4 and 1989 mm
(see Table 1 of Adams et al. [2006] for details).
Various stages of bubble coalescence are evident
in the samples and the walls of coalesced bubbles
are approximately 1–3 mm in thickness, similar to
Plinian dacites and rhyolites elsewhere [Klug and
Cashman, 1996; Klug et al., 2002].

[15] Novarupta dacites contain phenocrysts (pre-
dominatly plagioclase with minor clinopyroxene
and magnetite) [Hildreth, 1983] and a few plagio-
clase microlites [Adams et al., 2006]. Because pla-
gioclase is not amenable to nucleation and because
the size and number density of bubbles is not sig-
nificantly higher around phenocrysts, heterogenous
bubble nucleation associated with crystals is not
likely to have been of importance at Novarupta
[e.g.,Hurwitz and Navon, 1994;Gardner and Denis,
2004; Mourtada-Bonnefoi and Laporte, 2004;
Gardner, 2007a; Larsen, 2008].

3. Vesicle Size Distributions
in Pyroclasts

[16] Vesicle size distributions (VSDs) in pyroclasts
are frequently used to infer conditions of syner-
uptive magma vesiculation, that is bubble nucleation,
growth and coalescence. VSDs represent one exam-
ple of what is known generically as a population
distribution. The standard approach to quantitative
studies of population distributions is the population
balance equation (PBE), which describes the tem-
poral change in a population distribution due to the
addition (birth), change in size (growth) and loss
(death) of individual members of the distribution.
In our case, birth denotes bubble nucleation, as a
consequence of volatile supersaturation of the melt.
Growth refers to bubble growth as a consequence
of decreasing pressure and exsolution of volatiles.
It could also include a decrease in bubble size,
due to open-system gas loss, which is not consid-
ered explicitly herein. Last, death refers to bubble
coalescence.
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[17] Consequently, a quantitative interpretation of
VSDs requires the estimation of nucleation rate
J(t), growth rate G(a, t) and coalescence rate H(a, t),
either by forward or by inverse modeling. However,
one of the challenges lies in the difficulty of solv-
ing the population balance equation [Ramkrishna,
2000]. Much of this difficulty arises due to the
coalescence term, which, despite recent progress
[e.g., Larsen and Gardner, 2000; Burgisser and
Gardner, 2005; Gardner, 2007b; Bai et al., 2008;
Gonde et al., 2011], remains to a large extent
insufficiently constrained as an a-priori model
parameter [e.g., Gaonac’h et al., 1996; Klug and
Cashman, 1996; Herd and Pinkerton, 1997;
Blower et al., 2002; Gaonac’h et al., 2003, 2005;
Lovejoy et al., 2004]. We therefore do not model
bubble coalescence. After providing a brief review
on the quantitative descriptions of VSDs in this
section, we discuss bubble nucleation and growth
in subsequent sections.

3.1. Number Density
[18] The total number of vesicles in a sample is
given by

ntot ¼
X

ni; ð1Þ

where ni is the number of vesicles per size class i,
which frequently is defined in terms of vesicle radius
or volume. If, for example, a denotes vesicle radius,
then there are ni vesicles of radius ai < a ≤ (ai+1).
Because of the wide range in vesicle sizes found in
pyroclasts, the value of ai is often taken to increase
geometrically by a factor of d, so that logai = id.
VSDs in Novarupta pyroclasts have been character-
ized with d = 0.1 [e.g., Adams et al., 2006].

[19] The total number of vesicles per unit volume of
matrix, called the vesicle number density, is given
by

Nm ¼ ntot
vm

; ð2Þ

where vm is the volume of matrix, which usually
is comprised of glass or glass plus microlites.
Here we defineNm as the number of vesicles per unit
volume of glass matrix. Although bubbles may
continue growing during the time interval between
magma fragmentation and pyroclast quenching
[Thomas et al., 1994; Gardner et al., 1996], espe-
cially in large clasts or where cooling rate is slow,
conventionally it is thought that Nm is a reasonable
approximation to the bubble number density (BND),
the number of bubbles per unit volume melt prior
to quenching of the pyroclast [e.g., Toramaru, 2006].
Therefore, we shall use the terms vesicle number

density and bubble number density interchangeably
herein. Nm provides a time-integrated record of bub-
ble nucleation, albeit potentially modulated by
bubble coalescence. It is found the Nm varies con-
siderably among pyroclasts from various eruptions
[Toramaru, 2006; Rust and Cashman, 2011].

[20] The vesicle number density, n(ai), and the
exceedance density, N(ai), are two frequently used
representations of VSDs. They are defined, respec-
tively, as the number of vesicles within a given size
interval per volume of solid matrix

n aið Þ ¼ 1
vm

ni
aiþ1 ! aið Þ ; ð3Þ

the number of vesicles per volume of matrix that are
greater than or equal to size ai

N aið Þ ¼
X∞

i

n aið Þ: ð4Þ

3.2. Volume Fraction Density
[21] Vesicle size distributions in pumice are fre-
quently logarithmic [Proussevitch et al., 2007] and
detailed population characteristics, such as multiple
modes, may not be easily recognizable on logarith-
mically plotted distribution densities n(ai) or N(ai).
Vesicle volume fractions, f(ai), also called vesicle
volume distributions (VVDs), are not logarithmi-
cally distributed, because of the decrease in volume
for small vesicle sizes. f(ai) is defined as the
volume of vesicles within a given size range, divided
by the total volume of vesicles in the sample,

f aið Þ ¼
Xaiþ1

a¼ai

n að Þa3
!X∞

a¼0

n að Þa3; ð5Þ

and provides a useful complement to n(ai) and
N(ai) [Sparks and Brazier, 1982;Klug and Cashman,
1994; Mangan and Cashman, 1996; Herd and
Pinkerton, 1997;Klug et al., 2002; Shea et al., 2010].

4. Bubble Nucleation

4.1. Classical Nucleation Theory
[22] Based on classical nucleation theory [Hirth
et al., 1970; Sparks, 1978; Hurwitz and Navon,
1994; Mangan and Sisson, 2005], the rate of bubble
nucleation, J, is thought to depend on the volatile
supersaturation of the melt as

J ¼ C exp ! 16ps3

3kBTDP2
s
y

" #
: ð6Þ
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Here s is the surface tension between the melt and the
exsolved magmatic volatiles, kB = 1.3805( 10!23 J/K
is the Boltzmann constant and T is the absolute
temperature. 0 ≤ y ≤ 1 is a geometrical factor
that accounts for the presence of impurities (e.g.,
crystals), which lower the interfacial energy asso-
ciated with the formation of a stable bubble nucleus
[e.g., Hurwitz and Navon, 1994; Gardner and
Denis, 2004; Mourtada-Bonnefoi and Laporte,
2004; Gardner, 2007a; Larsen, 2008]. C is a pre-
exponential factor and DPs is the supersaturation
pressure given by

DPs ¼ psat ! pm; ð7Þ

where pm is the pressure of the melt and psat is the
pressure at which melt would be saturated with the
actual concentration of dissolved volatiles, assuming
equilibrium conditions (Figure 1). For silicate melts,
C is usually given as [Hirth et al., 1970; Sparks,
1978; Hurwitz and Navon, 1994; Mangan and
Sisson, 2005]

C ¼ 2n20VmD
a0

ffiffiffiffiffiffiffiffi
s
kBT

r
: ð8Þ

Here n0 is the number of dissolved volatile
molecules per volume of liquid (melt), Vm is the
volume of a volatile molecule, D is the diffusivity
of the volatile species in the liquid (melt) and
a0 ≈ n0

!1/3 is the mean distance between dissolved
volatile molecules. Note that no = (NAXrm/M),
where NA = 6.02 ( 1023 is Avogadro’s number,
rm is the melt density, M is the molar mass of

the volatile species, and X is the mass fraction of
dissolved volatiles.

[23] The presence of impurities, such as crystals, with
lower interfacial energy between bubble (i.e., vapor)
and solid (i.e., crystal) than the interfacial energy
between vapor and liquid (i.e., melt), decreases the
Gibbs free energy of a stable bubble nucleus. Con-
sequently, higher nucleation rates can be achieved at
a given supersaturation. Nucleation in the presence
of such nucleation sites is called heterogeneous
nucleation, as opposed to homogeneous nucleation.
All else being equal, DPs,hetero < DPs,homo and
within the context of classical nucleation theory is
a consequence of y < 1. The theoretical value of y
is determined by the contact angle q between
nucleation sites and exsolved vapor phase (Figure 2)

y ¼ 2! cos qð Þ 1þ cos qð Þ2

4
: ð9Þ

The wetting angle is controlled by the relative
values of the interfacial (surface) tensions: vapor-
liquid (sLB), vapor-solid (sSB), and solid-liquid
(sSL). It is defined as

cos q ¼ sSB ! sSL

sLB
: ð10Þ

For q < 90# the bubble is poorly wetting, as opposed
to for q > 90#. For q = 0# the value of y = 1 and the
presence of crystals has no effect on nucleation.
y also depends on the shape of the nucleation sub-
strate, where Equation (9) corresponds to the case of
a planar substrate. Relative to a planar surface, the
nucleation efficiency will be enhanced on a concave
substrate, but reduced on a convex substrate [Cluzel
et al., 2008, and references therein].

[24] In many natural and artificial systems nucleation
proceeds at significantly higher rates than would be
predicted by classical nucleation theory. A number
of explanations have been proposed to explain this
discrepancy, including the presence of submicro-
scopic impurities or inhomogeneities to reduce the
energy barrier for nucleation [e.g., Lubetkin, 2003].
To what extent bubble nucleation in erupting

Figure 1. Schematic diagram illustrating supersaturation
pressure, DPs, the difference between the pressure at
which the melt would be saturated (in equilibrium) with
the dissolved volatiles, psat, and the actual pressure, pm.

Figure 2. Schematic diagram illustrating the definition
of contact angle, q, and interfacial tension between solid
and bubble, sSB, liquid and bubble, sLB, as well as solid
and liquid, sSL. If the volatiles within the bubble are
more wetting to the solid (crystal) than the liquid (melt),
then q > 90#.
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magmas occurs at higher rates than would be
predicted from classical nucleation theory, as seems
to be the case for many other nucleation processes,
is an important question [e.g., Mourtada-Bonnefoi
and Laporte, 2004]. Thus, empirical values of sur-
face tension for natural silicate melts may perhaps
constitute an effective surface tension

se ¼ s y1=3; ð11Þ

with y accounting not only for the presence of
crystals, but any other effect that reduces Gibbs free
energy of a stable bubble nucleus.

4.2. Bubble Nucleation During Magma
Ascent
[25] During rapid magma ascent and decompression,
the melt may become increasingly supersaturated,
if volatiles cannot diffuse fast enough from the melt
into bubbles [e.g., Lensky et al., 2004]. However,
even if diffusion is fast enough, the melt may
become supersaturated if bubbles cannot grow fast
enough, relative to the rate of magma ascent and
decompression. In this case the pressure of exsolved
volatiles within bubbles remains high. The ability
of volatiles to diffuse and exsolve into bubbles
depends on the concentration of dissolved volatiles
at the melt-vapor interface, which in turn depends
on the pressure of the exsolved volatiles within bub-
bles. Therefore, if bubbles cannot grow fast enough,
the resultant overpressure prevents volatile exsolu-
tion, resulting in supersaturation [e.g., Gonnermann
and Manga, 2007].

[26] Classical nucleation theory predicts a continuous
and steep increase in nucleation rate asDPs increases,

with nucleation rates of up to "1030 bubbles m!3

s!1 for values of DPs " 100 MPa (e.g., Figure 3)
[Mangan and Sisson, 2005]. To what extent con-
tinuous nucleation is substantiated by experiments,
where in some cases it appears that nucleation
occurs as a discrete event, is unclear [e.g., Gardner
et al., 1999;Mourtada-Bonnefoi and Laporte, 1999,
2004; Gardner and Ketcham, 2011]. Models of
continuous nucleation predict a steep increase in
nucleation rate within a very short time interval [e.g.,
Toramaru, 1989, 1995], perhaps experimentally
indistinguishable from a discrete event.

[27] During the steep increase in nucleation rate
associated with rapid decompression and increasing
supersaturation, the spatial density of bubbles will
reach a threshold where all of the melt begins to be
affected by volatile diffusion into bubbles. Because
J is so strongly dependent on supersaturation, it will
rapidly drop to zero once this threshold is reached
[e.g., Toramaru, 1989, 1995; Mourtada-Bonnefoi
and Laporte, 2002]. How soon after the onset of
nucleation this threshold is reached depends on
the relative rates of diffusion and decompression.
The former scales as the ratio of volatile diffusivity
to the square of the thickness of melt between indi-
vidual bubbles, which decreases as the number and
size of bubbles increases. Consequently, the rates of
bubble growth assert a strong control on the time
interval over which bubbles can nucleate.

[28] As depicted in Figure 4, the entire process may
be envisaged by a volume of magma that consists of
fully saturated melt, bubbles and surrounding dif-
fusion envelopes [Kedrinskiy, 2009]. The threshold
for the cessation of bubble nucleation can be viewed
as the time, tn, at which the entire melt volume is
encompassed by diffusion envelopes [Toramaru,
1989, 1995; Kedrinskiy, 2009]. Within this con-
ceptual framework, and neglecting bubble coales-
cence,

Nm ¼
Z tn

0
J dtn; ð12Þ

where tn is the time since the onset of nucleation.

4.3. The Moments of the Bubble Size
Distribution
[29] One approach to modeling Nm has been to
solve the equation of motion about moments of the
bubble size distribution, assuming that there is no
coalescence or breakage of bubbles [e.g., Randolph
and Larson, 1971; Toramaru, 1989, 1995]. This

Figure 3. Contours of predicted bubble nucleation rates
(black lines) for Novarupta dacite at 850#C, for different
supersaturation pressures, DPs, as well as corresponding
dissolved H2O content and H2O diffusivity [Zhang and
Ni, 2010] and surface tension, s.
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method has been employed to assess magma decom-
pression rates and we summarize it here to provide
the necessary background for the subsequent dis-
cussion on modeling of VSDs via diffusive bubble
growth.

[30] The zeroth moment, M0 of the BSD equals Nm
and is calculated as

M0

dt
¼ Nm

dt
¼ J : ð13Þ

The first moment, M1, is given by

M1

dt
¼ GM0; ð14Þ

where G is the growth rate of a bubble with mean
radius !R ¼ M1=M0. Higher order moments are cal-
culated from

Mj

dt
¼ jGMj!1: ð15Þ

[31] The zeroth and first order moments have been
the primary focus of previous studies [Toramaru,
1989, 1995, 2006]. In addition to Equations (6),
(13) and (15), the zeroth and first order moments
require an equation for the average bubble growth
rate G ¼ d!R=dt . Bubble growth is governed by
mass conservation of volatiles and momentum
balance of the melt-fluid interface. The latter,
assuming constant melt viscosity, h, and a spherical
bubble geometry, is given by

d!R
dt

¼
!R
4h

pg ! pm ! 2s
!R

" #
; ð16Þ

where pg is the gas pressure inside bubbles and pm
the pressure in the surrounding melt.

[32] Typically, pm decreases at some prescribed
rate, dpm/dt, whereas pg is calculated from conser-
vation of mass

d
dt

pg!R
3

% &
¼ 4

BT
m

!R2rmD
∂cw
∂r

" #

r¼!R
: ð17Þ

Here B is the universal gas constant, T is absolute
temperature, m is the molar mass of the volatile
species, rm is the density of the melt, r is the radial
coordinate with r = 0 at the bubble center, and cw is
the concentration of dissolved H2O. The diffusive
flux of volatiles from the melt into the bubble
depends on the concentration gradient at the bubble
wall, which can be obtained from the mean field
approximation [Toramaru, 1989]

∂cw
∂r

" #

r¼!R
≈

cw;0 ! cw;pg
!R

: ð18Þ

Here cw,0 is the initial volatile content and cw,pg is
the equilibrium volatile content at pressure pg,
obtained from a suitable solubility formulation.

4.4. The Role of Surface Tension, s
[33] The advantage of solving Equations (13)–(15),
together with Equations (16) and (17), lies in the
efficiency of the mean field approximation
(Equation (18)), albeit at the cost of potential inaccu-
racies. It also requires explicit calculation of J in
Equation (13), which requires that s is known. How-
ever, because of the exceedingly strong dependence

Figure 4. (a) Schematic representation of the proposed
bubble nucleation and growth model [e.g., Kedrinskiy,
2009, Figure 10]. (1) represents the bubble; (2) represents
the diffusion envelope that is the part of the melt where
volatile concentrations and correspondingly nucleation
rates are low; and (3) is the nucleation region. (b) Sche-
matic graph of volatile concentration in the melt, c, as a
function of radial distance, r. The concentration, c(pg),
at the melt-vapor interface (r = R) is dependent on the
pressure of the exsolved volatiles (gas)inside the bubble,
pg. The difference between the actual volatile concentration
(solid red) and the equilibrium saturation concentration,
c(pm), at ambient pressure, pm, is the supersaturation.
Nucleation rate (long-dashed blue), J, is negligible
inside the diffusion envelope of radius r = RD. The
radius of the melt shell associated with a given bubble
is denoted as r = S and nucleation ceases when the
radius of the diffusion envelope approaches a value of
RD → S.
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of J on s (Equation (6)), relatively modest uncer-
tainties in s can significantly affect model predictions
(Figure 3).

[34] That there is considerable uncertainty in s is
shown in Figure 5, which includes a compilation
of the empirical values of s for rhyolitic and
dacitic melts; note that these are determined almost
exclusively at water contents above 4 weight percent
(wt.%). Because of the tradeoff between DPs and s
(Figure 3), uncertainties in s, especially at low H2O,
will translate into significant uncertainties in DPs
and in predicted decompression rates via the method
of moments. This problem may be further exacer-
bated by the limitations associated with classical
nucleation theory itself, which for many different
nucleation processes tends to under-predict nucle-
ation rates [e.g., Lubetkin, 2003].

[35] In contrast to bubble nucleation, bubble growth
is relatively insensitive to s, if bubbles are of
radius >10!6 m (Figure 6), the lower bound for
vesicles preserved in many pyroclasts, including
those from Novarupta [Adams et al., 2006]. This fact

provides the main motivation for our methodology
of estimating J and dpm/dt indirectly from calcula-
tions of diffusive bubble growth, which furthermore
do not employ the mean field approximation.

5. Conceptual Framework for Modeling
Bubble Size Distributions

[36] The monotonic or near-monotonic increase
in vesicle abundance with decreasing size of the
Novarupta VSDs [Adams et al., 2006] can be
interpreted to be produced during a period of
continuous bubble nucleation and growth, during
which supersaturation and, hence, J continually
increased [Toramaru, 1989, 1995; Massol and
Koyaguchi, 2005; Nowak et al., 2011]. Within
this conceptual framework, the smaller a bubble,
the younger it is [e.g., Yamada et al., 2008] and its
growth time, t, can be obtained from diffusive
bubble-growth simulations, where t(a) is the time
for each of n(a) vesicles to grow to size a after
nucleation. We shall assume that bubble growth
ends at time tf, and that this time is the same for
all bubbles. Therefore, a bubble nucleated time
t = tf ! ta. It is thus possible to transform N(a) to
N(t) and to estimate the nucleation rate as

J tð Þ ¼ dN tð Þ
dt

: ð19Þ

[37] Assuming that the maximum nucleation rate
occurs when the maximum degree of supersaturation

Figure 5. Experimentally determined values of surface
tension, s, for rhyolitic (open symbols) and dacitic (filled
symbols) melts at different dissolved H2O contents. Also
shown are contours of predicted bubble nucleation rates
(black lines) for a Novarupta dacite at 850#C, different
dissolved H2O content and H2O diffusivity calculated
from the formulation of Zhang and Ni [2010]. Most
experimentally determined values of s are at high water
content and, under the assumption of classical nucleation
theory, would predict very high nucleation rates, J.More-
over, uncertainties in s by only a few percent result in
predictions of J that differ by several orders in magnitude.
Experimental values are by Mangan and Sisson [2005]
(rhyolite: MS05r, dacite: MS05d), Bagdassarov et al.
[2000] (haplogranite: B00hg), Mourtada-Bonnefoi and
Laporte [2004] (rhyolite: ML04r), Mangan and Sisson
[2000] (rhyolite: MS00r), Epel’baum et al. [1973] (rhyolite:
E73r) and Gardner and Ketcham [2011] (rhyolite: GK11r,
dacite: GK11d).

Figure 6. Modeled bubble radius, R, as a function of time
after nucleation for constant values of surface tension, s.
Initial dissolved H2O and CO2 are 2.62 wt.% and
34 ppm, respectively. Melt composition is Novarupta
dacite, temperature is 850#C, diffusivity is calculated using
the formulation of Zhang and Ni [2010], solubility is
calculated using the formulation of Liu et al. [2005], and
viscosity using the formulation of Hui and Zhang [2007].
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is reached, the pre-eruptive pressure of magma storage,
Pch, provides an upper bound on the supersaturation
pressure, DPs. Together with the maximum nucle-
ation rates and Equation (6) it is thus possible to
obtain a lower bound on se. Assuming a constant
se permits the calculation of DPs(t) from J(t) and
subsequently a minimum decompression rate

dpm
dt

¼ d
dt

DPs tð Þ½ *: ð20Þ

6. Diffusive Bubble Growth Modeling

6.1. Spatial Distribution of Bubbles
[38] Conceptually we assume that the vesicle size
distribution, n(a), is the consequence of bubbles
nucleating throughout the time interval 0 ≤ t ≤ tn
and at random locations within the supersaturated
melt that is not encompassed by diffusion envel-
opes (Figure 4). Once a bubble is nucleated it starts
growing and its time of nucleation, tf ! ta, and
final bubble radius, R = a, are inversely correlated.
That is, the oldest bubbles have the largest radii.

[39] For simplicity, we assume that the final distri-
bution, n(R) = n(a), approximates a smoothly vary-
ing concentration of dissolved volatiles throughout
the melt. Given the spherical approximation of
bubble growth [e.g., Amon and Denson, 1984;
Arefmanesh and Advani, 1991; Proussevitch et al.,
1993], this corresponds to the condition that the
volatile concentration at the outer radius of the melt
shell, cr=S, has the same value for all bubbles.
The resultant spatial distribution of bubble cells
would be space-filling and similar to an Apollonian
packing geometry [Borkovec et al., 1994; Blower
et al., 2002].

6.2. Bubble Nucleus
[40] We assume that the size of the critical bubble
nucleus can be derived from the Laplace relation,
which describes the mechanical equilibrium condi-
tion for a bubble

pg ! pm ¼ 2s
R

: ð21Þ

The critical bubble radius, Rc, that satisfies Equation
(21) is given by [e.g., Proussevitch et al., 1993]

Rc ¼
2s
DPs

: ð22Þ

If R < Rc the bubble will shrink and disappear.
To assure bubble growth, the initial bubble therefore
has to satisfy the condition R > Rc [e.g.,

Proussevitch et al., 1993] and we use an initial
bubble radius of R = (1 + g) Rc, with g = 10!2.

6.3. Diffusive Bubble Growth
[41] Bubble growth is a consequence of magma
decompression, due to a decrease in ambient pres-
sure, pm. This decrease in ambient pressure causes
volume expansion of the already exsolved volatiles
and the further diffusion of volatiles from the melt
into existing bubbles. Here we consider both H2O
and CO2 as the exsolving volatile species. The
solubilities of H2O and CO2, denoted as sw and sc,
respectively, are based on the formulation by Liu
et al. [2005] and represent a reasonable approxi-
mation for joint H2O-CO2 solubilities in dacite
melts [Zhang et al., 2007]. sw and sc depend on
temperature and their partial pressure within the
coexisting gas phase, (1 ! xc) pg and xc pg,
respectively. Here xc is the mole fraction of
exsolved CO2 within the bubble.

6.3.1. Volatile Exsolution

[42] The mass flux of each volatile species into a
bubble is determined by the concentration gradient
in the melt at r = R, the melt-gas interface

qi ¼ Di
∂ci
∂r

" #

r¼R
: ð23Þ

Here ci is the concentration of volatile species i
(i = w for H2O or i = c for CO2). Di is the diffusivity
of the given species within the melt, based on
Equations 20 and 41 of Zhang and Ni [2010] for
H2O and CO2, respectively. The concentration of
dissolved H2O and CO2 at r = R are assumed to
be equilibrium solubilities at pressure pg and vapor
phase composition xc [Liu et al., 2005]. As indicated
by Equation (22), newly nucleated bubbles are under
considerable internal pressure (pg ! pm " 107 Pa),
because of the Laplace pressure, 2s/R [Toramaru,
1989, 1995]. During the early stages of bubble
growth, the associated decrease in Laplace pressure
asserts a strong influence on volatile exsolution,
given that sw and sc are strongly pressure dependent
[Liu et al., 2005]. This potentially rapid change in sw
and sc results in steep concentration gradients and
large fluxes, qi, of exsolving volatiles.

6.3.2. Volatile Diffusion

[43] The mass flux of exsolving volatiles is calcu-
lated from a diffusion model for volatiles within the
melt surrounding each bubble. We employ the cell
model for bubble growth [e.g., Amon and Denson,
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1984; Arefmanesh and Advani, 1991; Proussevitch
et al., 1993], wherein bubbles are assumed to be
spatially distributed such that each bubble can be
approximated as a sphere surrounded by a spherical
melt shell of thickness S ! R. Because of the
spherical symmetry inherent in this approximation,
volatile diffusion simplifies to

∂ci
∂t

þ vr
∂ci
∂r

¼ 1
r2

∂ci
∂r

Dir2
∂ci
∂r

" #
; ð24Þ

where vr = dR/dt is the radial velocity of melt at
r = R. Equation (24) is solved using an implicit
finite difference scheme in a Lagrangian frame of
reference and with a non-uniform grid. The latter
assures that concentration gradients at the melt-
vapor interface are accurately resolved [Arefmanesh
and Advani, 1991; Proussevitch et al., 1993]. The
boundary condition at r = S is

∂ci
∂r

" #

r¼S
¼ 0; ð25Þ

and as mentioned previously,

cið Þr¼R ¼ si pg; xc
' (

: ð26Þ

6.3.3. Mass Conservation

[44] Mass conservation of volatiles requires that

d
dt

rgR
3

% &
¼ 4R2rm

X

i

qi; ð27Þ

where the density of the exsolved gas phase, rg,
depends on pg via an equation of state [Kerrick and
Jacobs, 1981] and melt density, rm = 2400 kg m!3,
[Spera, [2000] is approximated as constant. We
assume that each bubble grows as a closed system.

In other words, no gas is lost from the bubble. This
approximation is valid if the timescale for bubble
growth is much shorter than the characteristic
timescale for permeable flow through interconnected
bubbles. We provide an assessment of this assump-
tion in section 8.5.

6.3.4. Momentum Balance

[45] Bubbles grow as a consequence of volatile flux
into bubbles and volume expansion of the already
exsolved volatiles. The balance between volume
expansion and additional exsolution of volatiles
determines how much pg and, hence, rg decrease.
Bubble growth is resisted by viscous and capillary
stresses, which are balanced by the pressure dif-
ference between the gas mixture inside the bubble
and the surrounding melt

pg tð Þ ! pm tð Þ ¼ 2s
R

þ 4he
1
R
dR
dt

: ð28Þ

Here he is the effective viscosity accounting for the
radially variable H2O-dependent viscosity (Figure 7)
[Lensky et al., 2001; Hui and Zhang, 2007] and dR/
dt is the radial velocity of the melt-vapor interface.
The pressure in the surrounding melt, pm, is a
boundary condition and may be time-dependent.

6.3.5. Solution Method

[46] The coupled Equations (24)–(28) are solved
using a similar formulation as described by
Arefmanesh and Advani [1991] and by Proussevitch
et al. [1993]. However, in our case Equation (24) has
to be solved separately for H2O and CO2, but with
concentration boundary conditions, that couple both
diffusion calculations. At each time step a consistent
solution for Equations (24)–(28) is obtained through
nonlinear minimization of the difference between
gas volume predicted by Equations (27) and (28).
Because we model bubble growth over a range
of bubble sizes spanning up to 6 orders of magnitude,
the nonlinear grid-spacing parameter for Equation
(24), discussed in detail by Proussevitch et al.
[1993] and by Chouet et al. [2006], is optimized to
maintain good mass balance of H2O and CO2
throughout the calculation.

7. Modeling the Bubble Size
Distribution

[47] We focused our study on the three aforemen-
tioned clasts from Episode III of the 1912 Novarupta
eruption (section 2.5), because they represent a range

Figure 7. Viscosity, h, as a function of dissolved
water, cw, for Novarupta dacite, based on the formulation
of Hui and Zhang [2007] at a temperature of 850#C.
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in clast vesicularity and afford the opportunity to
investigate potential differences in the vesiculation
process within a sample.

7.1. Initial Conditions
[48] Initial conditions were based on the experi-
mental work by Hammer et al. [2002], who deter-
mined pre-eruptive volatile saturation and pressure
using mineral phase relations. They obtained a pre-
eruptive H2O saturation pressure for Novarupta
dacite of pH2O = 50 MPa at a temperature of 850#C.
Natural mineral and melt compositions were also
reproduced under saturation conditions with a mixed
H2O + CO2 fluid for the same pH2O, if the fluid phase
consists of up to 10% CO2 (xc ≤ 0.1). We therefore
used initial conditions that are equivalent to
pH2O = 50 MPa and xc = 0.1 using the solubility
model of Liu et al. [2005].

[49] The initial concentrations of dissolved H2O and
CO2 are c(w,0) = 2.62 wt.% and c(c,0) = 34 ppm,
respectively. The corresponding equilibrium solu-
bility pressure is psol = 55.52MPa.We used an initial
bubble radius of R0 = (1 + g) 2s/psol (section 4) at
an internal pressure pg = psol, where g = 10!2. We
assumed a constant value of s = 0.08 N m!1

[Gardner and Ketcham, 2011, and references
therein], because model results are not significantly
sensitive to s, within the range of measured values
(Figures 5 and 6). Furthermore, we assumed a con-
stant ambient pressure, pm = 105 Pa, for the bubble
growth calculations.

7.2. Modeling the Volume Fraction
Density, f(ai)
[50] Using these initial and boundary conditions,
we modeled bubble growth for individual bubbles,

j, each of which is surrounded by a given volume of
melt, vm,j. Each bubble undergoes a distinct growth
history, beginning at time t = tf ! tj (Figure 8) and
resulting in a final vesicle size, Rj(tj), after a growth
time, tj. The values of tj and Rj(tj) were deter-
mined from the condition that

c w;r¼Sð Þ ¼ 1! !ð Þ c w;0ð Þ; ð29Þ

where ! ≪ 1 assures that the condition of Equation
(29) represents the threshold at which diffusion
begins to affect the entire volume of melt, that is
when J begins to decrease rapidly (Figures 8 and 9).
Furthermore, the requirement that c(w,r=S) is the
same for all bubbles assures that the concentration
of H2O between any two bubbles is continuously
smooth. Because the diffusivity of CO2 is consid-
erably smaller than H2O diffusivity, we found that
c(c,r=S) = c(c,0) for all of our calculations (Figure 10).

[51] Using smooth cubic spline interpolation of the
discrete values Rj = f(tj), we obtained the functions
R = fR(t) (Figure 11), and from the relation

vm;j ¼
4p
3

Sj tð Þ3 ! Rj tð Þ3
h i

; ð30Þ

we similarly obtained S = fS(t).

[52] We then find the values of t = ti, corresponding
to the condition fR(ti) = ai. Defining Ri = fR(ti) and
Si = fS(ti), we calculated the predicted volume
fraction of vesicles (Figure 12) from

fmod ¼
X

i

fmod aið Þ ¼
X

i

n aið Þ Ri

Si

" #3
" #

: ð31Þ

Figure 8. Modeled bubble radius, R, as a function of
time after bubble nucleation, for bubbles with different-size
diffusion envelopes ranging from vm = 1 mm (smallest R)
to vm = 108 mm (largest R) in factors of 10.

Figure 9. Concentration of dissolved H2O in weight
percent (wt.%) at time tj after nucleation, for bubbles
with vm,j = 100, 101.. 108 mm3 as a function of radial
distance from the melt-vapor interface, r-R, of the
growing bubble.
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[53] We repeated the steps outlined in this section
iteratively for different values of ! until the misfit
between modeled and measured volume fraction,
|fmod ! fsam| was minimized. We found that
10!3 ≤ ! ≤ 10!2 provides a good fit (Figure 13).
The resultant volume fraction density distributions,
fmod(ai), together with the actual distributions,
fsam(ai), are shown in Figure 12.

7.3. Nucleation Rate, J(t), and Pressure,
pm(t)
[54] Using the functional relation fR(t) at values of
R = ai and a smooth cubic spline interpolation, we
obtain N(t) = N(tf ! t) from the discrete distribution
N(ai). We then calculate the time-dependent nucle-
ation rate, J(t), from N(t) using Equation (19). The
results are shown in Figure 14.

[55] Assuming that the maximum value of J(t) occurs
atDPs = Pch, we calculate se using Equation (6) and
subsequently DPs(t) from J(t) using Equation (20).
The results are shown in Figure 15.

8. Discussion

8.1. Nucleation and Decompression Rates
[56] Modeling of vesicle size distributions measured
in Novarupta dacite clasts 94-Z-22-8, 94-Z-22-24
and 94-Z-22-28 (Figure 12) provides constraints on
nucleation rate (Figure 14) and decompression rate
(Figure 15). The three clasts span a range in vesic-
ularity (f = 0.52, 0.64 and 0.75) within a single
tephro-stratigraphic level, interpreted in terms of
radial variability within the conduit [Adams et al.,
2006]. We find that the observed textural variability
requires approximately 25% variability (≈1 MPa s!1)
in decompression rate. The estimated peak nucle-
ation rates are similar to the predictions by
Toramaru [1989, 1995, 2006], but at decompres-
sion rates of <107 Pa s!1, which are considerably
lower than those predicted by Toramaru [1989,

Figure 10. Concentration of dissolved CO2 in parts per
million (ppm) at time tj after nucleation, for bubbles
with vm,j = 100, 101.. 108 mm3 as a function of radial dis-
tance from the melt-vapor interface, r-R, of the growing
bubble.

Figure 11. Modeled and interpolated values of Rj, Ri
and R versus tj, ti and t, respectively (sample 94-Z-
22-24).

Figure 12. Comparison of modeled (fmod(ai)) and
actual (fsam(ai)) distributions of vesicle volume fraction
of Novarupta samples 94-Z-22-8, 24 and 28 (f = 0.52,
0.64 and 0.75, respectively).
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1995, 2006] and more consistent with conduit
flow models [e.g., Koyaguchi, 2005; Massol and
Koyaguchi, 2005].

[57] The model makes no assumptions about where
or when bubble nucleation takes place, relative to
fragmentation. We find that the peak in nucleation
coincides with a peak in volumetrically averaged
bubble overpressure and values that are approxi-
mately equal to empirical overpressures at which
fragmentation is predicted (see section 8.2 for a
detailed discussion). Unless fragmentation occurred
by some other mechanism than postulated by cur-
rent fragmentation models [e.g., Spieler et al.,
2004a; Mueller et al., 2008], the most plausible
explanation would be that the predicted coincident
peaks in bubble overpressure and nucleation also
coincided with fragmentation. In other words,
bubble nucleation and fragmentation occur in very
close temporal succession, suggesting that both
feed back upon one another.

8.2. Magma Fragmentation
[58] The Novarupta dacite VSDs indicate magmatic
conditions close to the critical stress threshold for
magma fragmentation (Figure 16). The fragmenta-
tion stress threshold predicts brittle fracture of
bubble walls, once (pg ! pm) exceeds a critical
value [e.g., Alidibirov, 1994; Zhang, 1999; Spieler
et al., 2004a; Mueller et al., 2008]. This thresh-
old, expressed in terms of a potential energy, Yfr,
increases with sample porosity, f, because the
potential energy, Y, of the compressed volatiles
within a given volume of magma increases with f.
In addition, the thickness of the melt that surrounds
individual bubbles, whose tensile strength must be
exceeded for fragmentation, decreases with increas-
ing f. However, as f increases, more bubbles
become interconnected, thereby increasing perme-
ability, k. Because permeable outgassing dissipates
overpressure, Yfr also depends on k, and has been
determined empirically by Mueller et al. [2008] as

Yfr ¼ 8:21( 1011
ffiffiffi
k

p
þ 1:54( 106 in units of Jm!3: ð32Þ

[59] We find that the maximum volumetrically
averaged bubble overpressure occurs when the
model matches the vesicle size distributions pre-
served in the Novarupta pumice samples. If the
associated potential energy was sufficient to cause
magma fragmentation, magma permeability prior to
fragmentation must have had values of k≪ 10!13 m2

(dashed lines in Figure 16, see also discussion in
section 8.5). Nucleation of the vast majority of bub-
bles took place within "0.1 s, perhaps not much
longer than the time it takes for magma to traverse the
fragmentation ‘level’ [Spieler et al., 2004b]. Con-
sistent with the work by Massol and Koyaguchi

Figure 13. Misfit |fmod ! fsample| for sample 94-Z-22-
24 as a function of the parameter ! (Equation (29)).

Figure 14. Predicted nucleation rates, J, as a function
of !t.

Figure 15. Predicted ambient pressure, pm, as a function
of !t.
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[2005], this implies that nucleation proceeded until
fragmentation, and supports the notion that feed-
backs between bubble nucleation and fragmentation
are self-sustaining processes, with the peak in
nucleation rate more or less coinciding with
fragmentation.

8.3. Magma Ascent Rates
[60] Magma ascent rates below the depth of frag-
mentation, u, can be calculated from the estimated
decompression rates, dpm/dt, where

dpm
dt

¼ dz
dt

dpm
dz

¼ u
dpm
dz

¼ u
dpm
dz

" #

r
þ u

dpm
dz

" #

h
: ð33Þ

Here,

dpm
dz

" #

r
¼ 1! fð Þrmg " 104 Pa ð34Þ

magma-static pressure loss and

dpm
dz

" #

h
¼ 2 1! fð Þ rmu2

f
d

ð35Þ

is the viscous pressure loss. d is the conduit diameter
and f is the friction factor

f ¼ 16
Re

þ f0: ð36Þ

Re = udrm(1 ! f)/h is the Reynolds number and f0
has values of about 0.002–0.02 [e.g., Mastin and
Ghiorso, 2000]. Thus

dpm
dt

¼ u 1! fð Þ rmg þ 32u2
h
d2

þ 2u3 1! fð Þ rm
f0
d
: ð37Þ

At the observed values of f, predicted values of
dpm/dt (Figure 15), likely values of d " 100 m
[Hildreth and Fierstein, 2012], as well as h > 105 Pa s
(Figure 7) [Hui and Zhang, 2007], predicted magma
ascent rates just below the fragmentation depth are
"10 m s!1.

8.4. Bubble Coalescence
[61] The minimum bubble wall thickness in silicic
melts, before spontaneous rupture and coalescence,
is thought to be "1 mm or less [e.g., Klug and
Cashman, 1996; Navon and Lyakhovsky, 1998].
Given a magma viscosity of "105 Pa s (Figure 7),
the time required for capillary or gravitational thin-
ning of bubble walls is too long to be of significance
for the Novarupta dacites. Instead, coalescence is
expected to be the consequence of bubble-wall
thinning as a consequence of bubble growth
(C. Nguyen et al. The lifetime of bubbles: film
drainage and bubble coalescence, submitted to
Geochemistry, Geophysics, Geosystems, 2012).

[62] Although we presently lack quantitative a-
priori constraints on bubble coalescence rates during
bubble growth, bubble shapes potentially provide a
record thereof. After the melt film that separates
adjacent bubbles ruptures and bubbles coalesce,
capillary stress deforms bubbles back toward a
spherical shape. This process is sometimes referred
to as shape relaxation and occurs over a character-
istic timescale [e.g., Gardner, 2007b]

trelax "
hR
s

: ð38Þ

[63] For Novarupta dacite with R ≥ 10!6 m, we find
that trelax ≥ 1. It is therefore likely that textural
evidence for coalescence should be preserved
within pyroclasts [e.g., Klug and Cashman, 1996;
Gardner, 2007b]. The VSDs modeled herein are
based on a methodology whereby multiple coa-
lesced vesicles with incomplete shape relaxation
are treated as multiple individual vesicles [Adams

Figure 16. The potential energy for fragmentation, Y,
is calculated using Equation 14 of Alidibirov [1994]
and the fragmentation threshold is based on the empirical
formulation of Mueller et al. [2008] at a permeability of
≪10!13m2.
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et al., 2006]. Therefore, not modeling coalescence
represents a reasonable approximation, especially
for the smallest (i.e., youngest) vesicles.

8.5. Open-System Degassing
[64] The predicted onset of magma fragmentation
requires the exsolution of only 10–20% of the
pre-eruptive magmatic volatiles (Figures 9 and 10).
We have measured approximately 2.4 wt.% H2O
in the Novarupta dacite pumice samples, but it is
unclear how much of this H2O is of magmatic ori-
gin, as opposed to from rehydration by atmospheric
H2O (T. Giachetti and H. M. Gonnermann, Water in
pumices: Rehydration versus incomplete degassing,
submitted to Earth and Planetary Science Letters,
2012). Unless Novarupta pumice samples retain a
large fraction of pre-eruptive magmatic volatiles
within their matrix glass, degassing of most of these
volatiles requires some degree of open-system gas
loss, either before, during or after fragmentation.
Open-system gas loss requires that coalescing bub-
bles form a continuous network of interconnected
bubbles through which magmatic gas can flow. This
is thought to occur at f ≥ 0.3 [e.g., Rust and
Cashman, 2004; Wright et al., 2009; Rust and
Cashman, 2011]. Our bubble growth calculations
assume a closed system (section 6.3.3). This is valid
if there is insufficient time for gas to escape prior to
magma fragmentation and will be substantiated in
the subsequent paragraphs.

[65] An estimate for the rate of permeable gas flux
can be obtained from Forchheimer’s equation
[Forchheimer, 1901; Innocentini et al., 1998; Rust
and Cashman, 2004]

pg
L

"
hg
k1rg

qg þ
1

k2rg
q2g; ð39Þ

where it is assumed that gas flow is caused by a
pressure difference of the order of pg over a char-
acteristic length of L. Here, qg is the mass flux of
gas, h " 10!5 Pa s is gas viscosity [e.g., Takeuchi
et al., 2009; Rust and Cashman, 2004, 2011],
rg = pgmg/RgT is gas density, mg " 10!2 kg mol!1

is the molar mass of the gas phase, Rg = 8.314 J
mol!1 K!1 is the universal gas constant, and T is
the temperature. In addition, k1 is the viscous
(Darcian) permeability and k2 is the inertial (non-
Darcian) permeability, which can be approximated
as k2 = 4.75 ( 1014 (k1)

1.87 [Rust and Cashman,
2004].

[66] The advective mass flux of dissolved volatiles,
carried upward with the ascending magma at
velocity u, is given by

qm " u rm c w;0ð Þ þ c c;0ð Þ
' (

: ð40Þ

For estimated magma ascent rates of u " 10 m s!1

and c(w,0) + c(c,0) " 104 ppm, Equation (40) gives
qm " 102 kg s!1 m!2.

[67] A conservative requirement for open-system
gas loss not to be negligible is that

qg ≥ 0:1qm: ð41Þ

For a relatively high value of k1 " 10!12 m2 [e.g.,
Rust and Cashman, 2004; Wright et al., 2009; Rust
and Cashman, 2011], mg " 10!2 kg mol!1, the
inequality of Equation (41) gives the minimum
constraint that qg ≥ 10 kg s!1 m!2, which indicates
that the last term in Equation (39) is dominant
[Degruyter et al., 2012], that is

hg
k1rg

qg≪
1

k2rg
q2g: ð42Þ

Consequently, from Equation (41)
ffiffiffiffiffiffiffiffiffiffiffiffiffi
pgk2rg

L

r
≥ 10 kg m!2 s!1; ð43Þ

or
ffiffiffi
L

p
≤

pg
108 Pa m!1=2

: ð44Þ

[68] This inequality is difficult to satisfy below the
fragmentation depth and the assumption of closed-
system degassing to this point is therefore justified.
Only within a very short distance of the ‘fragmen-
tation surface’ will permeable gas loss become
significant [Mueller et al., 2008]. For example, at
pressures near the fragmentation value, that is
pg " 107 Pa, permeable gas loss becomes important
within L " 10!2 m of the fragmentation surface or,
equivalently, during the last "10!3 s prior to frag-
mentation. It should be noted that k1 " 10!12 m2 is
a conservatively high value and that values of
k1 " 10!13 m2 are probably more reasonable to
assume at fragmentation.

[69] Once the magma has fragmented, L " 10!2 m
[e.g., Rust and Cashman, 2011; Dufek et al., 2012],
and Equation (39) indicates that open-system
degassing of pyroclasts will be efficient over a wide
range of values of pg. Thus, unless the matrix glas-
ses of the 1912 Novarupta dacite pyroclasts contain
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a large fraction of the pre-eruptive volatiles, the
majority of magmatic volatiles must have been lost
after magma fragmentation and prior to quenching
[e.g., Thomas et al., 1994; Gardner et al., 1996;
Kaminski and Jaupart, 1997, 1998; Tait et al.,
1998; Xu and Zhang, 2002; Burgisser and Gardner,
2005; Takeuchi et al., 2009], through combined vol-
atile exsolution and open-system gas loss. If this is the
case, and if open-system gas loss is sufficiently fast to
balance exsolution, there may be negligible change in
bubble size over viscous timescales of hR/s ≳ 10 s.

9. Conclusions

[70] Vesicle size distributions in pumice provide a
direct record of the dynamics of magma ascent. For a
given parcel of magma, ascent-driven decompres-
sion produces increasing volatile supersaturation
and bubble nucleation rates. Older bubbles grow
larger, because volatiles diffuse into the bubble from a
larger volume of melt. Those portions of the melt not
yet affected by diffusion into existing bubbles remain
fully saturated and comprise a region where bubbles
continue to nucleate. Once volatile concentrations
begin to decrease throughout the entire melt vol-
ume, bubble nucleation rates diminish rapidly.

[71] The fundamental approximation of our model-
ing approach is that the time when nucleation ceases
is a common time for all bubbles within a given
volume of melt, regardless of their time of nucle-
ation. Pegging this time for any bubble, permits the
reconstruction of a nucleation history. Our model
accounts for the joint exsolution of H2O and CO2
and we find that main effect of CO2 is to decrease
the rates at which bubbles grow after nucleation.
However, because of the relatively low CO2 con-
centrations in Novarupta dacites, this effect is not of
importance.

[72] Because we estimate bubble nucleation rates
from precise diffusive bubble growth calculations,
we minimize the large uncertainties associated with
surface tension. We predict magma decompression
rates of the order of 107 Pa s!1, consistent with
conduit flow models [e.g., Koyaguchi, 2005;
Massol and Koyaguchi, 2005] and approximately
one order of magnitude lower than would be pre-
dicted by the bubble number density decompression
rate meter of Toramaru [2006]. Our modeled vesi-
cle size distributions for the Novarupta dacite sam-
ples are consistent with conditions that correspond
to the potential energy threshold for magma frag-
mentation. Therefore, the highest nucleation rates

appear to coincide with magma fragmentation,
supporting the notion that feedbacks between
both processes are potentially self-sustaining [e.g.,
Massol and Koyaguchi, 2005].

[73] In 1912 Novarupta dacite that formed the pyr-
oclasts analyzed herein, bubble growth was rapid.
The smallest vesicles, which are also the most
abundant, grew to their final size within a few
hundredmilliseconds. Interestingly, our model results
suggest that only a fraction of the pre-eruptive dis-
solved volatiles, that is 10–20%, is exsolved from
the melt at the time of magma fragmentation. The
implication is that the 1912 Novarupta pyroclasts
either retain a substantial amount of magmatic
volatiles in their matrix glass, or that the majority
of magmatic volatiles was lost by open-system
degassing after magma fragmentation and before
quenching.
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