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Abstract Plinian lapilli from the 1060 Common Era Glass Mountain rhyolitic eruption of Medicine
Lake Volcano, California, were collected and analyzed for vesicularity and permeability. A subset
of the samples were deformed at a temperature of 975∘, under shear and normal stress, and
postdeformation porosities and permeabilities were measured. Almost all undeformed samples
fall within a narrow range of vesicularity (0.7–0.9), encompassing permeabilities between approximately
10−15 m2 and 10−10 m2. A percolation threshold of approximately 0.7 is required to fit the data by
a power law, whereas a percolation threshold of approximately 0.5 is estimated by fitting connected
and total vesicularity using percolation modeling. The Glass Mountain samples completely overlap
with a range of explosively erupted silicic samples, and it remains unclear whether the erupting
magmas became permeable at porosities of approximately 0.7 or at lower values. Sample deformation
resulted in compaction and vesicle connectivity either increased or decreased. At small strains
permeability of some samples increased, but at higher strains permeability decreased. Samples
remain permeable down to vesicularities of less than 0.2, consistent with a potential hysteresis in
permeability-porosity between expansion (vesiculation) and compaction (outgassing). We attribute this
to retention of vesicle interconnectivity, albeit at reduced vesicle size, as well as bubble coalescence
during shear deformation. We provide an equation that approximates the change in permeability
during compaction. Based on a comparison with data from effusively erupted silicic samples, we propose
that this equation can be used to model the change in permeability during compaction of effusively
erupting magmas.

1. Introduction

Single eruptions of silica-rich magmas frequently encompass phases of intense explosive as well as effusive
activity (e.g., Adams, Houghton, Fagents, & Hildreth, 2006; Castro et al., 2013; Donnelly-Nolan et al., 2008;
Gardner et al., 1998; Lara, 2009; Nairn et al., 2004; Saubin et al., 2016; Schipper et al., 2013). Despite variabil-
ity in detail, the majority of pyroclasts from high-intensity explosive phases have porosities of approximately
0.7–0.8 (e.g., Houghton & Wilson, 1989; Mueller et al., 2011), corresponding to a vesicle-to-matrix ratio of
approximately 2 to 4. Because the concentrations of magmatic water within the matrix glass of pyroclasts
record near-atmospheric pressures (Giachetti & Gonnermann, 2013; Giachetti et al., 2015; Seligman et al.,
2016), it stands to reason that the magma decompressed to approximately atmospheric pressure before
quenching. Given typical estimates of pre-eruptive dissolved volatiles (e.g., Wallace, 2005), magma decom-
pression to atmospheric pressure as a closed system, which is without loss or gain in volatiles, is expected to
result at equilibrium in gas-to-melt volume ratios that are about 100-fold higher than typically observed in
pyroclasts (Cashman & Mangan, 1994; Thomas et al., 1994). Porosities of effusively erupting magmas are even
lower, down to zero in the case of obsidian, despite similar amounts of pre-eruptive dissolved volatiles in effu-
sively and explosively erupted magmas (e.g., Eichelberger et al., 1986; Newman et al., 1988). The discrepancy
between theoretical closed-system and observed porosities is thought to be the consequence of open-system
degassing, with a net loss of volatiles from the magma (Eichelberger et al., 1986; Westrich & Eichelberger,
1994), presumably following a period of vesiculation and increasing porosity. This is a consequence of the net
loss of pore fluid from the magma by permeable flow, together with viscous flow of the surrounding silicate
melt, referred to as “compaction” (McKenzie, 1984).
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We will use the term “gas” to refer to exsolved magmatic volatiles, which constitute a supercritical fluid under
magmatic conditions. Volatile solubility decreases during eruptive magma ascent, resulting in magma expan-
sion, which encompasses nucleation, growth, and coalescence of volatile-bearing bubbles (e.g., Cashman &
Mangan, 1994; Sparks, 1978; Sparks et al., 1994). We will refer to the combination of these processes as magma
“vesiculation.” The volume fraction of magma occupied by exsolved volatiles will interchangeably be referred
to as “vesicularity” or “porosity” (Cashman & Scheu, 2015). It should be noted, however, that porosity is more
general and refers to any void space, including fractures. Although the words “vesicle” and “bubble” may
also be used interchangeably, our usage will reflect the rationale that bubbles become vesicles when magma
quenches (Cashman & Scheu, 2015).

Magma degassing generally refers to the process of volatile exsolution from melt into bubbles. If bubbles do
not move relative to the melt that surrounds them, and if volatiles only enter or exit bubbles by diffusion from
the melt, the degassing is considered to be a closed-system process. Here the “system” is defined as the given
volume of magma. Open-system degassing, in contrast, refers to the case where gas can enter and/or leave a
given volume of magma. “Outgassing” (e.g., Cashman & Scheu, 2015; Nimiki & Manga, 2008) is a special case
of open-system degassing and refers to the case where the mass of gas exiting the system is greater than
that entering it. For silicic magmas, where viscosity is large and buoyant rise of bubbles negligible, outgassing
requires that magma is permeable and gas can flow through the magma from high to low gas pressure, along
gradients that are likely directed upward and perhaps also radially outward toward conduit walls. Because
magma decompresses during ascent, causing exsolved volatiles to expand, outgassing may simply lead to a
slower rate of magma expansion and the eruption of magma with lower porosity than under closed-system
conditions. If, however, the rate of outgassing is sufficiently high, magma may undergo compaction. The resul-
tant pore geometry represents bubbles that have shrunk in size and no longer have rounded shapes (Westrich
& Eichelberger, 1994), referred to as “mature” vesicle texture (e.g., Adams, Houghton, & Hildreth, 2006) and
distinct from vesicles textures observed in samples that are not thought to have compacted.

It is believed that outgassing facilitates the nonexplosive eruption of magma (Eichelberger et al., 1986). For
example, erupting magma may outgas into conduit walls, if the wall rock is permeable and at given depth
contains pore fluid at lower pressure than the magma (Jaupart & Allègre, 1991; Stasiuk et al., 1996). This is
expected to be the case for near hydrostatic pore fluid pressure within the wall rock. The time available for
permeable gas flow is inversely proportional to magma ascent rate, whereas outgassing into conduit walls is
rate limited by permeability. The rate-limiting permeability may either be of the wall rock or of the magma
itself. In case of a constant, rate-limiting wall rock permeability, the transition from explosive to effusive activity
has been predicted to be a consequence of decreasing ascent rate, all else being equal (Jaupart & Allègre,
1991; Woods & Koyaguchi, 1994).

Permeability within the conduit wall remains poorly constrained. Values used in numerical models (Jaupart
& Allègre, 1991; Woods & Koyaguchi, 1994), as well as inferences based on fracture permeabilities of volcanic
materials (e.g., Farquharson et al., 2016, 2017), allow for the possibility that despite the potential for magma
undergoing shear fracture near the conduit wall (e.g., Gonnermann & Manga, 2003; Kushnir et al., 2017;
Tuffen et al., 2003), the wall rock may on average be more permeable than the bulk of the magma. Therefore,
magma permeability may ultimately be rate limiting during outgassing. Because magma permeability
depends on porosity, as first shown by Eichelberger et al. (1986) and subsequently in numerous analyses
(for example Colombier et al., 2017, provide a recent compilation), it is conceivable that outgassing into
conduit walls produces compacted magma of low permeability along conduit walls (e.g., Heap et al., 2017;
Polacci & Papale, 2001), thereby hindering outgassing from the interior of the conduit. By the same token,
magma pressure decreases upward and vertical gas flow within the ascending magma may also lead to
outgassing. Eruption models with upward permeable gas flow have assumed that magma permeability is pro-
portional to some power of porosity, encompassing a wide range of possible porosity-permeability relations
(e.g., Burgisser et al., 2017; Degruyter et al., 2012; Konzo & Koyaguchi, 2009a, 2009b; Melnik et al., 2005; Melnik
& Sparks, 1999, 2002).

It is assumed that magma is impermeable below some threshold in porosity. Theoretically, a porosity thresh-
old exists because bubbles at low volume fractions are sufficiently distant from one another to prevent
pervasive coalescence (Blower, 2001b). In percolation theory the formation of long-range connectivity in ran-
dom systems exists above the “percolation threshold,” because a porous volume is considered impermeable
until at least one cluster of interconnected pores spans the entire volume. A “percolating cluster” can only
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form after a sufficient fraction of the volume is occupied by pores and the minimum volume fraction of pores
at which a percolating cluster first exists is called the percolation threshold (e.g., Stauffer & Aharony, 1994).
The porosity threshold of volcanic rocks is thus equivalent to the percolation threshold at which a cluster of
coalesced bubbles forms an interconnected pathway throughout the magma.

As bubbles nucleate and grow, the melt separating individual bubbles becomes thinner. Bubbles deform to
accommodate the increase volume fraction and also due to shear deformation associated with magma flow.
In addition to bubble deformation, stretching of the surrounding melt as well as capillary and gravitational
forces contribute to the thinning of melt films. As a consequence, melt films can become sufficiently thin to
rupture (e.g., Castro, Burgisser, Schipper, & Mancini, 2012; Eichelberger et al., 1986; Klug & Cashman, 1994,
1996; Klug et al., 2002; Nguyen et al., 2013; Proussevitch et al., 1993; Taylor et al., 1983; Toramaru, 1988; Westrich
& Eichelberger, 1994). The resultant holes connect adjacent bubbles but grow slowly because the high viscos-
ity of silica-rich melt results in large viscous forces, relative to capillary forces (Klug & Cashman, 1996; Nguyen
et al., 2013; Proussevitch et al., 1993). The emergent network of interconnected bubbles renders the magma
permeable, with relatively small increases in porosity strongly enhancing bubble connectivity and leading to
large increases in permeability. It is thought that shear deformation of the ascending magma, presumably
most pronounced near conduit walls (e.g., Gonnermann & Manga, 2007; Mastin, 2005), will deform bubbles
and thereby enhance bubble coalescence (Namiki, 2012; Okumura et al., 2009). For explosively erupted mag-
mas there is a complete lack of low-porosity samples and all samples analyzed to date have been permeable;
however, a porosity threshold is consistent with experimentally vesiculated samples (e.g., Burgisser & Gardner,
2005; Burgisser et al., 2017; Lindoo et al., 2016; Takeuchi et al., 2009). To complicate matters further, it has
been suggested that permeability is hysteretic (Michaut et al., 2009; Rust & Cashman, 2004). This means that
permeability depends on the history of magma vesiculation and for a given porosity permeability will have
different values, depending on the direction of change in porosity.

The main objective of this paper is to test the hypothesis of permeability hysteresis. Instead of porosity-
permeability relations obtained from samples across a variety of different eruptions, we focus on a single
eruption, the 1060 Common Era (CE) Glass Mountain (GM) eruption of Medicine Lake Volcano, California,
which encompasses both explosive and effusive phases. We first establish porosity-permeability relations for
a suite of pyroclastic pumice from the Plinian phase of the eruption, which are of high porosity (on average
between 0.7 and 0.8). We subsequently examine experimentally how porosity and permeability of these sam-
ples change during compaction and compare our results to data from other explosive and effusive eruptions,
as well as other laboratory experiments. Unless magma is pervasively fractured, pore-scale flow is expected to
be rate limiting during outgassing (Castro, Cordonnier, et al., 2012; Castro et al., 2014). We therefore focus on
the development of permeability in the absence of magma fracturing, which may occur during shear deforma-
tion of the erupting magma (Castro, Cordonnier, et al., 2012; Castro et al., 2014; Gonnermann & Manga, 2003;
Kushnir et al., 2017; Schipper et al., 2013; Tuffen et al., 2003, 2008) and also during compaction of dome lavas
(Ashwell et al., 2015; Gonnermann & Manga, 2005; Tuffen et al., 2008). We thus develop a functional relation
for the change in permeability with respect to porosity that is suited for numerical modeling of open-system
magma degassing.

2. Geological Context

The Glass Mountain eruption was the last event of the postglacial eruptive activity of Medicine Lake Volcano,
California (Anderson, 1933; Donnelly-Nolan et al., 2007, 2008; Heiken, 1978). The eruption consisted of
a Plinian phase, during which crystal-free rhyolitic pumice erupted, followed by the emplacement of
produced a lava flow, with a total erupted volume of approximately 1 km3. The Plinian phase produced
a fallout deposit of 0.27 km3 dry rock equivalent, consisting of poorly sorted rhyolitic lapilli with no evi-
dence for deposition by pyroclastic flows (Heiken, 1978). All pumices are essentially phenocryst-free (<5%,
Heiken, 1978), with a microlite content of approximately 3 vol% (Stevenson et al., 1996), and texturally
homogeneous.

The chemical composition of the tephra is similar to that of the Glass Mountain flow and has a SiO2 con-
tent of approximately 72–75 wt% (Anderson, 1933; Heiken, 1978; Grove & Donnelly-Nolan, 1986; Grove et al.,
1997). Magmatic inclusions and experimental petrologic studies indicate that the Glass Mountain magma
formed under near H2O-saturated conditions at pressures of 100–200 MPa (Grove et al., 1997), equivalent
to depths of 3–6 km and initial magmatic water content of about 4–6 wt% (Liu et al., 2005). In agreement
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Figure 1. Examples of permeability measurements. Air flux as a function of
pressure gradient for samples BGM-P-A2A-4 (log10 k = −14.91, with k in
units of m2), BGM20-3 (log10 k = −13.19), and BGM20-4 (log10 k = −10.89),
together with least squares fits to estimate permeability coefficients k, k∗,
and 𝛼 in equation (1).

with these petrological and geochemical studies, seismic tomography has
identified a silicic magma body of up to few tens of cubic kilometers vol-
ume at 3–7 km below the eastern part of Medicine Lake caldera (Chiarabba
et al., 2012; Donnelly-Nolan et al., 2008; Evans & Zucca, 2012).

3. Analysis of Plinian Fall
3.1. Vesicularity Measurement
Twenty-four representative pumice clasts from the Plinian phase of the
Glass Mountain eruption were collected across a wide stratigraphic range
of the fallout deposit, located near the northern margin of the Glass Moun-
tain flow. Clasts vary in size and reach up to 0.30 m in diameter. They
are phenocryst free and isotropic, showing no obvious vesicle orientation
or gradients in porosity or vesicle size. Depending on clast size, one or
several cores, 0.02 m in diameter, were drilled from each clast and then
cut to produce samples of 0.01–0.02 m length, resulting in a total of 76
samples with approximate aspect ratio of 1:1 for porosity and perme-
ability analysis. The envelope volume of each sample, Vt, was estimated
using the average of 10 measurements of the length and diameter of the
cylinder obtained with a digital caliper. The sample was then weighed to
determine its mass, Mt. The skeletal volume, Vs, that is solid matrix plus

isolated vesicles not accessible by gas was obtained using a He-pycnometer (AccuPyc II 1340, Micromeritics
Instrument Corporation). Together with the envelope volume, Vt, that is solid matrix plus all vesicles, Vs

was used to calculate the connected, helium-accessible volume, Vt − Vs = Vc. From the ratio of Vc and Vt

we calculated the connected vesicularity, 𝜙c, for each sample. Part of the sample not used for permeabil-
ity analysis was finely crushed, the powder was weighed, and the powder volume was determined using
the helium pycnometer. From these we calculated an average matrix density of 𝜌m = 2, 430 kg m−3. For
each sample we calculated the matrix volume Vm = Mt∕𝜌m and the total vesicularity, 𝜙t = (Vt − Vm)∕Vt,
of the sample.

3.2. Permeability Measurement
The cylindrical samples produced during the vesicularity analysis were mounted on plexiglas and sealed with
high-viscosity epoxy along the radial perimeter, so that air flow during permeability measurements was in
the axial direction. Because of the high viscosity of the epoxy and its short curing time, we see no evidence
for significant imbibition of epoxy in microtomographic images of select samples. The volumetric flow rate of
laboratory air through the sample was measured at different inlet pressures using a capillary flow porometer
(Model CFP-1100AXL-AC, Porous Media, Inc.). The maximum applied pressure difference for any sample was
0.5 MPa resulting in volumetric flow rates over a range of approximately 1 to 2 orders of magnitude, measured
using several flow meters, each accurate over a different range of flow rates, and ranging from the minimum
detection limit of 3 × 10−8 m3 s−1 to less than 3 × 10−3 m3 s−1 (Figure 1). For a cylindrical sample of 0.02 m
in length and 0.01 m in radius, which is the average size of our samples, the minimum measurable Darcian
permeability was approximately 10−17 m2. Given the nonlinear relation between pressure difference and flow
rate of these samples, the maximum measurable permeability exceeds any values reported herein.

Inertial effects can be significant when measuring the permeability of volcanic rocks at high flow rates
(Degruyter et al., 2012; Rust & Cashman, 2004; Takeuchi et al., 2008), requiring what is known as Forchheimer’s
correction to Darcy’s law (Forchheimer, 1901; Lasseux & Valdés-Parada, 2017, and references therein). Further-
more, for compressible gases the gas permeability may differ from the liquid permeability of the same mate-
rial, requiring what is known as the Klinkenberg slip correction (Klinkenberg, 1941; Lasseux & Valdés-Parada,
2017, and references therein). For each sample we assessed the requirement for each correction by estimat-
ing values of k, the Darcian permeability, k∗ the Forchheimer coefficient (non-Darcian permeability), and 𝛼,
the Klinkenberg slip factor, using

P2
2 − P2

1

2P1L
=

𝜂g

k
(

1 + 𝛼∕Pavg

)q +
𝜌g

k∗ q2, (1)
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Figure 2. (a) Darcian permeability, k, vs. total porosity, 𝜙t, for individual cores taken from the Glass Mountain pumice
clasts (Plinian fall). Measurement limit on k is approximately 10−17 m2. The red curve represents the least squares
fit to the measured values of 𝜙t as a function of k, based on equation (2), with dashed red curves showing the 95%
confidence interval. Inset shows the range in values obtained from multiple cores of the same clast with the mean value
of log10(k) and 𝜙t shown as filled circles and the vertical and horizontal bars indicating the range in values for the given
clast. (b) Corresponding connectivity, C, versus total porosity, 𝜙t. The solid gray curve is the least squares fit to 𝜙c as a
function of 𝜙t obtained from percolation modeling with 𝜀 = 0.35, corresponding to estimated values of 𝜙cr = 0.52,
b = 0.42, and n = 2.87. Also shown as gray dashed curves are results from percolation modeling for 𝜀 = 0.15, 0.25, 0.45,
0.55, corresponding respectively to 𝜙cr = 0.40, 0.45, 0.59, and 0.66, as well as b = 1.04, 0.69, 0.22, 0.13, and n = 3.21, 3.07,
2.66, 2.49.

where P2 and P1 are the inlet and outlet pressures, respectively, and Pavg = (P2 + P1)∕2. Furthermore, q is the
volumetric flow of air per sample cross-sectional area (i.e., the volume flux of air), L is the length of the sample,
𝜂g = 1.86 × 10−5 Pa s, and 𝜌g are respectively the viscosity and density of the air, with the latter approxi-
mated as an ideal gas with 𝜌g = 1.18 kg m−3 at P = 1 atm. We find that all samples require a Forchheimer
correction, whereas a Klinkenberg slip correction does not improve the fit and the estimated value for 𝛼 is
≪1 Pa. Figure 1 provides an illustrative example of flow rate data and best fits using equation (1).

3.3. Porosity and Permeability Values (Plinian)
Results of the porosity and permeability analyses of the Glass Mountain pumices are provided in Figure 2 and
Table A1. All estimated permeabilities are at least 2 orders of magnitude larger than the detection limit of
10−17 m2. Furthermore, all samples show a high ratio of connected to total porosity, defined as connectivity,
C = 𝜙c∕𝜙t.

Each data point shown in Figure 2 corresponds to an individual core taken from a set of clasts, whereas the
inset to Figure 2a shows the mean and the range in values for all cores from a given clast. It indicates a large
degree of heterogeneity in permeability at the centimeter scale.

Similar to other porous materials, the permeability of vesicular volcanic rocks can be assessed within the
framework of percolation theory (e.g., Blower, 2001a, 2001b), yielding a power law to describe the relationship
between k and 𝜙t

k = a r2
(
𝜙t − 𝜙cr

)n = b

(
𝜙t

(1 − 𝜙t)

)2∕3 (
𝜙t − 𝜙cr

)n
. (2)

Here b, n, and 𝜙cr are fitting parameters. r is the average vesicle radius, which for a given bubble number
density, N, is dependent on porosity as

r3 = 3
4𝜋N

𝜙t

1 − 𝜙t
. (3)

𝜙cr is called the percolation threshold, which is defined as the porosity below which permeable flow is not
possible, because no interconnected pore space spans the entire sample. These parameters can be estimated
by fitting a function 𝜙t = f (k). This is the solid red curve in Figure 2 obtained from a least squares fit to
equation (2) with an assumed value of n = 2, resulting in log10(b) = −8.892 (±0.837), 𝜙cr = 0.7436 (±0.0243)
and a root-mean-square error in 𝜙t of 0.037. It should be noted that a wide range of values n ≥ 1 will
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Figure 3. Illustration of the geometrical parameter 𝜀 used in the percolation
model (Blower, 2001a, 2001b). (a) SEM image of a Glass Mountain pumice
showing that vesicles can be nonspherical, representing deformed
bubbles that were separated by thin films of melt. (b) Two overlapping
spheres of radii r1 and r2. (c) At a value of 𝜀 = 0.40, corresponding to
d < (1 − 𝜀∕2) × (r1 + r2), the two spheres are considered connected
(coalesced) and gas can flow between them. (d) At a value of 𝜀 = 0.42,
corresponding to d >(1 − 𝜀∕2) × (r1 + r2), the two overlapping spheres are
considered isolated and gas cannot flow between them.

give similar fits to the data with little variability in root-mean-square
error and variations in 𝜙cr of approximately ±0.01, but significantly
different values of b.

3.4. Percolation Modeling (Plinian)
An alternative to fitting the data with a power law is fitting the measured
values of 𝜙t and 𝜙c, using a percolation model. In this manner one can
also obtain a functional relation between k and 𝜙t, shown as the solid gray
curve in Figure 2. The percolation model is based on the assumption that
the complex network of vesicles within a pumice can be reproduced by
spheres that are randomly distributed in a volume. Any two spheres that
overlap are assumed to be interconnected (Blower, 2001a, 2001b). At some
threshold volume fraction, 𝜙cr, enough spheres will be interconnected to
create a percolating cluster, defined as network of interconnected spheres
that spans the entire length of the sample, in principle allowing fluid flow
through the sample from one end to the other.
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Figure 4. (a) Backscattered scanning electron microscope image of a typical
fallout Plinian pumice from the Glass Mountain eruption. Vesicles appear
in dark gray and the glass in light gray. (b) Vesicle number (black) and
volume (red) fractions obtained by image analysis. Number density
is dominated by vesicles with a radius <5 μm, while volume is dominated
by vesicles 20–50 μm. The average vesicle radius is 12.1 μm.

The percolation model used spheres drawn at random from a size dis-
tribution equal to the vesicle size distribution of a representative Glass
Mountain sample, in order to account for the effect of polydispersivity on
𝜙cr (Blower, 2001b; Mecke & Seyfried, 2002). Each sphere was randomly
placed in a cubic volume of 10−8 m3 until a total porosity of the mod-
eled volume, 𝜙t, was reached. If the centers of two spheres of radii r1

and r2 are separated by a distance less than (1 − 𝜀∕2) × (r1 + r2), where
0 ≤ 𝜀 ≤ 1, the two spheres are considered connected (Blower, 2001a,
2001b). The parameter 𝜀 can be chosen arbitrarily. It determines the extent
to which two adjacent spheres must overlap before they are considered
to be connected through coalescence (Figure 3). The use of 𝜀 is based on
the observation that growing bubbles may impinge upon one another
and deform, but remain separated by a thin film of melt (Figure 3a). 𝜀 thus
accounts for the fact that spheres in the percolation model cannot deform,
allowing them to be modeled as unconnected (Figures 3b–3d), in analogy
to deformed but noncoalesced bubbles that would overlap if they were
spherical. Everything else being equal, a higher value of 𝜀 leads to less con-
nected spheres, a higher percolation threshold, and a lower permeability.
Overlapping spheres thus create clusters from which the connected poros-
ity, 𝜙c, was calculated. For each cluster that spanned from one end of the
sample to the other, defined as a “percolating cluster,” permeability was
calculated by assuming that flow resistance across the cluster depends on
the size and number of apertures between individual bubbles, equivalent
to a network of resistors (Blower, 2001a, 2001b).

The vesicle size distribution from which spheres were drawn was obtained
by image analysis from a representative Glass Mountain pyroclast with
𝜙t = 0.75 and 𝜙c = 0.66 (BGM20, Table A1). The sample was thin sec-
tioned and scanning electron microscope (SEM) images of this section
were taken at magnifications of 80X (one image) and 300X (three images).
These grayscale images (Figure 4a) were manually transformed into binary
images and vesicle walls were reconstructed if two adjacent vesicles are
interpreted to represent coalesced bubbles (e.g., Giachetti et al., 2010;
Toramaru, 1990). The images were then analyzed using the program
FOAMS (Shea et al., 2010). We used a minimum resolvable diameter of
5 pixels, which corresponds to a vesicle of approximately 2.4 μm on the
300X images. A minimum resolvable diameter of 5 pixels for this type of
highly porous pyroclast allows to discard noise in the data while maintain-
ing an uncertainty on the vesicle number density of about 5% (Shea et al.,
2010). The analysis of 2,250 vesicles on SEM images gave a vesicle number
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Figure 5. Results from the percolation model (circles) for 0 ≤ 𝜀 ≤ 0.7. (a) Connected porosity, 𝜙c, as a function of total
porosity, 𝜙t, and least squares fit using equation (4), with 1.5 × 10−3 ≤ 𝛽 ≤ 257 × 10−3 and 4.45 ≤ 𝛾 ≤ 6.89, both
depending on the value of 𝜀. (b) 𝜙cr as a function of 𝜙t and least squares fit using equation (5). (c) Permeability, k, as a
function of 𝜙t and least squares fit using equation (2).

density of 4 × 1014 m−3 per volume melt and an average vesicle radius of 12.1 μm, similar to Plinian pumices
from other eruptions (Figure 4b) (Adams, Houghton, & Hildreth, 2006; Klug et al., 2002; Rust & Cashman, 2011;
Shea et al., 2012, 2014). The maximum vesicle radius is about 200 μm and vesicles within 20–50 μm constitute
the majority of the porosity.

Because the calculation time for the percolation modeling increases exponentially with the number of
spheres, only spheres of size ≥10 μm were modeled. This choice is justified by the fact that vesicles with a
radius <10 μm represent a porosity of approximately 0.06, but account for about 90% of the vesicle number
density. Moreover, most of the smallest vesicles are likely isolated (e.g., Giachetti et al., 2010; Klug et al., 2002).
If connected, their contribution to sample permeability is expected to be small because permeability scales
with the square of vesicle radius (e.g., Saar & Manga, 1999; Blower, 2001a, 2001b).

In the percolation model the value of 𝜙t may be varied by changing the number of bubbles or their radius
(Blower, 2001a). We find that both approaches yield similar results, provided that the domain size is greater
than 10 times the largest bubble radius (Blower, 2001a), and we varied 𝜙t by changing the average bubble
radius. For a given value of 𝜀 we generated repeated realizations of the percolation model with different 𝜙t

and corresponding values of 𝜙c and k. For each value of 𝜀, we then estimated 𝜙cr by finding the best fit of 𝜙c

as a function of 𝜙t, using the functional relation

𝜙c = 𝜙t + 𝛽

(
1 − 1

𝜙𝜆
t

)
, (4)
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Figure 6. Sample during deformation photographed after opening oven at
a temperature of 975∘. During the deformation experiment the oven is
closed. A stable and uniform sample temperature is achieved through a
thermal control system. Shown are rotating upper shaft and stationary lower
shaft, both with serrated plates attached, and the deforming sample in
between. The lower shaft includes an internal thermocouple. To the right
of the sample is one half of the glowing opened oven.

where 𝛽 and 𝜆 are fitting parameters. The results are shown in Figures 5a
and 5b, where the functional relation between 𝜙cr and 𝜀 can be approxi-
mated by

𝜙cr = 0.332 + 0.397𝜀 + 0.362𝜀2. (5)

Using the value of 𝜙cr obtained from fitting of 𝜙c, we then find the best
fit of k as a function of 𝜙t, assuming that equation (2) applies. As shown
in Figure 5c, the results for each value of 𝜀 correspond to unique values of
𝜙cr, b, and n in equation (2) from which we obtain functional relations for
b and n with respect to 𝜀.

A comparison of the predicted relationships of 𝜙c versus 𝜙t and k versus
𝜙t with the measured values for the Glass Mountain samples is shown in
Figure 2. The fits that can be obtained from percolation modeling tend to
be biased toward lower values of the parameters b and n in equation (2),
compared to those obtained by direct fitting of k and 𝜙t. The narrow
range in 𝜙t over which all samples are permeable makes it difficult to con-
strain 𝜙cr (Figure 2a). This is also reflected in the clustering of 𝜙c versus
𝜙t data (Figure 2b). Although a value of 𝜙cr as low as 0.4, or perhaps even
less, is required to match samples with high connectivity, other samples
require considerably higher values of 𝜙cr. The remarkably narrow range in
𝜙t can perhaps be explained best as a reflection of the conditions at which
the magma fragmented. The simplest explanation for the correspond-
ingly wide range in k would be inherent heterogeneity in connectivity and

permeability, at least at the scale of individual pyroclasts (Figure 2a). Alternatively, it is simply a matter of
preservation, with impermeable parts of the magma fragmenting to ash size (Rust & Cashman, 2011).

4. Outgassing Experiments
4.1. Objective and Methodology
To better understand how permeability changes if the magma undergoes compaction and shear deforma-
tion, as it presumably does during effusive eruptions, we took a subset of the Plinian Glass Mountain clasts
and deformed them under combined compression and shear. Individual samples were mounted between

Figure 7. Illustrative example of sample before and after deformation:
(a) BGM-20-2 before deformation and (b) after deformation of approximately
313% shear strain and 59% axial strain. The sample is typical of all samples.
The change in color is due to sample oxidation. No barreling was observed.
Axial ends that were in contact with the serrated plates were carefully
sanded to assure that porosity and permeability measurements were not
affected by deformation of the sample surface due to the serrated plates.

two serrated parallel plates attached to an Anton Paar MCR301 rheome-
ter and placed inside a temperature-controlled oven preheated to 975∘

(Figures 6 and 7). Before deformation samples were held for longer than
the characteristic thermal diffusion time (∼100 s) to assure thermal equi-
libration (Bagdassarov & Dingwell, 1994). Throughout the experiments
temperature was held constant and measured by a thermocouple installed
within the lower plate. Based on design specifications, thermal gradients
across the sample were negligible and measured temperatures varied by
less than 1∘ throughout the deformation experiments.

A normal force of 𝜎 = 2 N and a torque of Γ = 1.07 × 10−2 N m−1 were
applied for a specified time between approximately 10 and 300 min. This
resulted in a range of total shear strain, 𝛾 , and axial strain, 𝜖, as shown in
Table A2, as well as maximum shear rates of 9×10−3 s−1 < 𝛾̇ < 8×10−6 s−1,
depending on sample diameter, and calculated as

𝛾̇(r=R) = RΩ
L
, (6)

where 𝛾̇(r) is the shear rate at radius 0 ≤ r ≤ R. Furthermore, R is the
sample radius, Ω is the rotation rate, and L is the axial length of the
sample. The resultant range in apparent viscosities was approximately
1010 Pa s to 1012 Pa s. At all times shear rates were below the onset of
non-Newtonian behavior, as defined by Webb and Dingwell (1990) for rhy-
olite from Medicine Lake Volcano. Simultaneously to shear deformation,
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Figure 8. Combined data from Plinian samples and deformation experiments. (a) Darcian permeability, k, versus total
porosity, 𝜙t, for Glass Mountain Plinian fall (red filled circles), which is the same as shown in Figure 2, together with
a subgroup of the same samples after compaction and shear deformation (blue filled circles). Lines connect each pair of
undeformed-deformed samples. Measurement limit on k is approximately 10−17 m2. (b) Corresponding connectivity,
𝜙c∕𝜙t, versus total porosity, 𝜙t.

an axial force of 𝜎 = 2 N was applied to each sample. This corresponds to stresses of approximately 1×104 Pa
to 2 × 104 Pa and resulted in average axial shortening rates of 𝜖̇∼10−4 s−1, which is at the lower end of experi-
mental conditions of, for example, Bagdassarov and Dingwell (1992). At the end of the experiment the sample
was cooled at a rate of approximately 0.5∘ s−1. To assure that samples did not fracture during deformation or
cooling, we inspected a subset of samples using computed microtomography (section 4.3).

The shear strain 𝛾 can be calculated from the sample radius, length, and the cumulative deflection angle, 𝜃,
recorded by the rheometer, as

𝛾 = R
𝜃

L
. (7)

The shear stress, 𝜏 , was calculated as

𝜏 = Γ
𝜋R3

(8)

and the shear rate, 𝛾̇ , as

𝛾̇ = ΩR
L
. (9)

The axial strain, 𝜖, is the Cauchy or engineering strain, calculated from the initial sample length, Li , and the
final length, Lf, as

𝜖 =
Lf − Li

Li
. (10)

Both L and R changed during the experiment. Whereas L is measured by the rheometer, the value of R as a
function of time was estimated assuming a constant rate of change between initial and final value, which is
reasonable because overall the sample radii changed only by small amounts (Table A2).

4.2. Porosity and Permeability After Deformation
We followed the procedure outlined in section 3 to measure porosity and permeability after sample deforma-
tion, with the flow directed along the axis of the cylindrical core. The results are shown in Figures 8 and 9, as
well as tabulated in Table A3. Deformation decreased sample porosity between approximately 10% and 75%.
Most deformed samples therefore have porosities that are lower than those observed in the undeformed Glass
Mountain Plinian samples. The tie lines in Figure 8a connect undeformed samples (denoted by superscript [i]
for “initial”) and deformed samples (denoted by superscript [f ] for “final”). If permeability development dur-
ing expansion of the Plinian samples followed a trajectory with a high percolation threshold, as inferred by a
power law relation between k and 𝜙t, then compaction of these samples was hysteretic with k at any given
𝜙t larger during compaction than during expansion, as first proposed by Rust and Cashman (2004).
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Figure 9. Data from deformation experiments. (a) Change in permeability, k, expressed as permeability ratio k[f ]∕k[i],
versus change in connectivity, C, expressed as connectivity ratio C[f ]∕C[i]. (b) Change in permeability versus change in
vesicularity, Δ𝜙t = 𝜙

[f ]
t − 𝜙

[i]
t . Black curves are predictions from equation (11) with n = 2.8. (c) Shear strain, 𝛾 , versus

change in vesicularity. (d) Predicted versus observed change in permeability based on equation (11), corresponding to
the results shown in Figure 9b.

The change in permeability during compaction is likely due to two contributing factors: (i) decreasing vesicle
size and (ii) change in connectivity. The required deformation of the melt can be due to applied , gravita-
tional, and capillary stresses (Kennedy et al., 2016). The latter scale inversely with bubble radius (e.g., Castro,
Burgisser, et al., 2012; Nguyen et al., 2013; Proussevitch et al., 1993; Toramaru, 1988). Because sample porosity
is predominantly due to vesicles with a radius of about 10 μm to 100 μm (Figure 4), capillary stresses were pre-
dominantly in the range 103 Pa ≲ 0.1 m N−1× (vesicle radius)−1 ≲ 104 Pa. Gravitational stresses were≲103 Pa,
whereas the applied stresses were ∼104 Pa. We conclude that the decrease in vesicle size and porosity were
predominantly in response to the applied shear and axial stresses, albeit with a secondary contribution due
to capillary stresses (Kennedy et al., 2016).

Our experiments indicate that after bubbles have become interconnected to form a permeable network, it
may be difficult to significantly reduce connectivity during compaction (Figure 8b). Although the precise
mechanism for this remains to be fully understood (e.g., Kennedy et al., 2016), during compaction samples
appear to remain permeable to low porosities. Therefore, assuming 𝜙c = 0 and no change in pore connec-
tivity other than the decrease in vesicle size, the change in permeability can be obtain by differentiating
equation (2), which gives

dk
d𝜙t

=
(

n + 2
3

) k
𝜙t

+ 2
3

k
(1 − 𝜙t)

. (11)

It should be noted that for n = 1, this is equivalent to assuming a Kozeny-Carman relation between permeabi-
lity and porosity (e.g., Berryman & Blair, 1987; Klug et al., 2002).
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Figure 10. Illustrative examples of postdeformation microtomography images of sample BGM-P-A2m-3, taken at
different axial positions and viewed perpendicular to the rotation axis. Note that there is no indication of fractures.
Image resolution for left image is 8.7 μm per voxel and 1.95 μm per voxel for the right one. Darker colors are vesicles
(pore space), whereas lighter colors are glass.

We have estimated parameter n in equation (11) by integrating this equation for each sample, from the initial
(undeformed) value of porosity,𝜙[i]

t , and corresponding initial value k[i], to its final (deformed) value,𝜙[f]
t , while

minimizing the root-mean-square error between the predicted and observed permeabilities of the deformed
samples, k[f]. The results are shown in Figure 9b and correspond to a value of n = 2.8. It is apparent that
equation (11) is inadequate at fitting samples that have undergone only small degrees of compaction, some
of which show an increase in permeability. It is in principle feasible to improve the fit by adding another
term to equation (11) to account for increases in vesicle connectivity, for example, due to capillary forces
(e.g., Kennedy et al., 2016), or due to bubble elongation, which has been shown to increase permeability and
reduce the percolation threshold (e.g., Blower, 2001b; Garboczi et al., 1995; Xu et al., 2016; Yi & Sastry, 2004).
At present we lack a sound theoretical foundation to derive such an additional term and we therefore refrain
from speculating based on empirical considerations. Nevertheless, our results indicate that it may be diffi-
cult to substantially reduce connectivity through compaction. Moreover, in the early stages of deformation
connectivity and permeability may even increase (Figures 8a and 8b).

4.3. Computed Microtomography
To ensure that measured permeabilities of the deformed samples are solely due to interconnected vesi-
cles, as opposed to fractures (e.g., Ashwell et al., 2015; Heap & Kennedy, 2016; Kushnir et al., 2017), we
imaged several samples using X-ray computed microtomography. The imaged samples, BGM-P-1B-1, BGM6-8,
and BGM-P-A2m-3 (Figure 10a), cover a wide range of shear strain (Table A2) and were analyzed at the
High-Resolution X-ray Computed Tomography Facility, University of Texas, Austin. The resolution used was
8.7 μm per voxel, obtained at 100 kV, 10 W, and with a 4 s acquisition time, producing a stack of 440–550
regularly spaced images per sample. Additionally, a scan of the center of sample BGM-P-A2m-3, which expe-
rienced the largest deformation, was also made at a resolution of 1.95 μm per voxel using 110 kV, 10 W, and
5 s acquisition time (Figure 10b).

The stack of low-resolution images was analyzed using the 3-D analysis plug-in of the Fiji image analysis soft-
ware (Ollion et al., 2013; Schindelin et al., 2012) with a cut-off in vesicle size of >50 voxels (Giachetti et al.,
2011), corresponding to a minimum equivalent sphere diameter of approximately 40 μm. The 23,768 vesicles
thus analyzed represent a porosity of 2.4%, accounting for about 7.4% of the 33.0% final porosity of the sam-
ple. They have an average aspect ratio of approximately 3.2 ± 0.4, are on average preferentially oriented at
an angle of 65 ± 8∘ from the deformational axis of rotation, and show increasing elongation and alignment
with distance from the rotation axis. Any fracture at least 2-voxel wide (i.e., about 20 μm on the low-resolution
images and 4 μm on the high-resolution ones) should be visible in the scans; however, none were detected.
We therefore believe that the permeability of our samples is due to interconnected vesicles.
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5. Comparison to Other Data

To provide broader context, we compare the Glass Mountain data to porosity and permeability data from
(1) fall deposits of other high-silica Plinian eruptions; (2) high-silica dome and flow samples; (3) vesiculation
experiments; and (4) other shear deformation experiments. These data are summarized in Figures 11 and B1.
One objective of the data comparison was to assess the variability among rhyolitic Plinian pyroclasts across
a range of eruption intensities, with the Glass Mountain samples representing the lowest intensity. A sec-
ond objective was comparing our compacted samples to natural rhyolitic samples that are thought to have
undergone compaction and shear deformation. Lastly, we hope to provide the reader with additional infor-
mation related to the existence of a percolation threshold. Given these objectives, we refrain from attempting
a comprehensive compilation of published porosity-permeability data.

5.1. Natural Samples
The following “natural” high-silica samples were included for comparison to the Glass Mountain samples:

1. Plinian fall from Little Glass Mountain represents an explosive phase similar age and close proximity to the
Glass Mountain samples (Rust & Cashman, 2004).

2. Plinian fall from the 7.7 ka climactic eruption of Mount Mazama formed Crater Lake caldera, Oregon (CLCP
samples of Klug & Cashman, 1996) and (Klug & Cashman, 1996, excluding the Welded Tuff samples).

3. Plinian fall from Episodes I–III of the 1912 eruption of Novarupta, Alaska (Adams, Houghton, Fagents, &
Hildreth, 2006; Adams, Houghton, Hildreth, 2006; Fierstein & Hildreth, 1992; Hildreth & Fierstein, 2000, 2012),
where mass eruption rates of approximately 5, 1.6, and 1.1 × 108 kg s−1, respectively, provide a powerful
Plinian reference (Nguyen et al., 2014).

4. “White microvesicular,” crystal-poor, rhyolitic Plinian fall from the “Taupo Plinian” (Table A4), which is
Unit 5 of the 181 CE Taupo eruption, New Zealand (Houghton et al., 2010, 2014), and provides another
high-intensity Plinian reference with discharge rates of about 108 kg s−1 and plume heights between 25
and 37 km.

5. Fall from the bottom part of Unit I of the Upper El Cajete member of Valles Caldera, New Mexico (e.g.,
Wolff et al., 2011; Self et al., 1988) represents an eruption column that may have been in a transitional
regime between fall- and flow-producing conditions (Wolff et al., 2011) and therefore constitutes a distinct
end-member regime of activity within the suite of Plinian samples (Table A5).

6. Pumices from the 0.76 Ma Bishop Tuff ignimbrite, Long Valley Caldera, California, were collected in the
unconsolidated, extremely poorly sorted, whitish pumice-rich Sherwin subunit of Ig1Eb (Hildreth & Wilson,
2007; Wilson & Hildreth, 1997). Although no estimate of mass discharge rate exists for the caldera-forming
phase of the eruption itself, the mass discharge rate of the precaldera Plinian phase peaked at about
7.5 × 108 kg s−1 (Gardner et al., 1991). These samples were deposited from pyroclastic density currents and
therefore provide a caldera-forming, high-intensity reference (Table A6).

7. Rhyolitic (Swanson et al., 1989) dome samples from the 600 year old Obsidian Dome, California, were the
basis for the original outgassing hypothesis by Eichelberger et al. (1986).

8. Samples from Little Glass Mountain and Glass Mountain lava flows represent a later phase of the same
eruptions that produced the Glass Mountain Plinian samples (Donnelly-Nolan et al., 1990). Some of the
samples were analyzed by Rust and Cashman (2004) and additional samples were analyzed by us (Table A7).

9. The 1912 Novarupta, Alaska, Episode V formed a lava dome and provides another effusive reference
(Nguyen et al., 2014).

5.2. Experimental Samples
We include two sets of experimentally vesiculated, crystal-free, rhyolitic samples for which porosities and per-
meabilities have been measured. They include rhyolitic melts experimentally vesiculated by decompression
from 180 MPa (approximately 4.7 wt% dissolved H2O) to 5–30 MPa at rates of 0.002–0.05 MPa s−1 (Takeuchi
et al., 2009), as well as data from Lindoo et al. (2016) who performed decompression experiments with rhy-
olitic melts (76.32% SiO2) that were hydrated at 150 MPa and decompressed at 0.25 MPa s−1 to pressures
between 15 and 125 MPa. We also include samples from Okumura et al. (2009) who measured permeability
and porosity of samples obtained from torsional deformation experiments of vesiculated rhyolitic melts at
shear rates of<0.029 s−1 up to a total strain of 34.6. The samples were natural obsidian from Wadatouge, Japan,
with 0.77 wt% SiO2 and 0.5 wt% dissolved H2O. Prior to deformation, samples were vesiculated by holding
them at 975∘ for 5–15 min. Permeabilities were measured parallel and perpendicular to the shear direction.

GONNERMANN ET AL. EXPANSION-COMPACTION PERMEABILITY 12



Journal of Geophysical Research: Solid Earth 10.1002/2017JB014783

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
-16

-15

-14

-13

-12

-11

-10

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1

Glass Mountain (Plinian)
Glass Mountain (Plinian Compacted)
Glass Mountain (Lava Flow)
Taupo (Plinian)
Valles Caldera (Plinian)
Long Valley (PDC)
Obsidian Dome, (Dome), Eichelberger et al., 1986
Crater Lake (Plinian), Klug & Cashman, 1996

Medicine Lake (Plinian), Rust & Cashman, 2004

Medicine Lake, (Lava Flow), Rust & Cashman, 2004
Novarupta (Plinian), Nguyen, et al., 2014
Novarupta (Dome), Nguyen, et al., 2014
Okumura, 2009 (Deformation Experiments)
Takeuchi et al., 2009 (Vesiculation Experiments)
Lindoo et al., 2016 (Vesiculation Experiments)

Crater Lake (Plinian), Klug et al., 2002

Figure 11. Data from Glass Mountain samples, other explosive and effusive eruptions, and experiments. (a) Log of
Darcian permeability, k, as a function of total vesicularity, 𝜙t. The red curve represents the fit to Glass Mountain Plinian
data (equation (2)) and the blue curves are based on equation (11). The arrows labeled 𝜙cr indicate the maximum value
of 𝜙t for which permeabilities were below the detection limit (∼10−17 m2 for Takeuchi et al., 2009 and <10−15 m2 for
Lindoo, 2016). (b) Connectivity, 𝜙c∕𝜙t, as a function of total porosity. (c) Connected volume fraction of vesicles, 𝜙c,
versus total porosity. (d) Log of Darcian permeability as a function of connectivity. Note the outliers in Figures 11b
and 11c are for experiments with undetectable permeabilities.

The permeability detection limit for these experiments was at about 10−16 m2, and only values for samples
with permeabilities above the detection limit are shown. These data provide a useful comparison to the
deformed Glass Mountain samples because they used crystal-free rhyolitic obsidian as the starting material.

6. Discussion
6.1. Permeability During Expansion
The Glass Mountain Plinian samples overlap extensively with Plinian fall from other silicic eruptions (Figure 11).
All samples are permeable and span a narrow range in porosity, but with a wide range in permeabil-
ity. Although samples from other eruptions also span a wide range in permeability, the Taupo samples
occupy a comparatively narrow range. Systematic large-scale spatial variations within the conduit, or varia-
tions in eruption dynamics over time, are thought produce variability in properties of the erupted magma
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(e.g., Adams, Houghton, Fagents, & Hildreth, 2006; Adams, Houghton, Hildreth, 2006), for example, in porosity,
vesicle texture and presumably also in permeability. We find that permeability of individual Glass Mountain
pyroclasts can be variable at the centimeter scale (Figure 2a). We therefore surmise that much of the overall
variability in permeability may be attributable to centimeter-scale heterogeneity within the magma.

We have seen no evidence for pervasive breaking of bubble walls during sample preparation or analysis,
and it has been suggested that the complete lack of impermeable, or for that matter low porosity, Plinian
samples is a consequence of impermeable magma fragmenting into ash-size particles, because excess gas
pressure cannot be dissipated by permeable flow (Rust & Cashman, 2011). An alternative possibility, which
we favor, is that the narrow range in porosity of the explosive samples shown in Figure 11 simply indicates
the porosity at which fragmentation conditions were reached (Gonnermann, 2015; Papale, 1999; Sparks,
1978) and that the lack of impermeable samples indicates that the magma had become pervasively per-
meable. Lastly, the decompression experiments shown in Figure 11 complement the natural samples with
low-porosity data. They support the prediction that vesiculating magma can remain impermeable up to a
threshold in porosity, likely the consequence of limited time for bubble coalescence during magma ascent
(Martel & Iacono-Marziano, 2015).

6.2. Permeability During Compaction
The relationship between permeability and porosity for crystal-free, effusive silicic samples is markedly
different from the Plinian samples. Similar to experimentally deformed samples, they have measurable perme-
abilities down to small values of 𝜙t, consistent with their high connectivity (Figure 11). As in the experiments
of Okumura et al. (2009) we observe bubble elongation and alignment in our deformed samples (Figure 10).
Although it is likely that our deformed samples are anisotropic with respect to permeability, we do not
quantify this. Instead we characterize permeability in the direction perpendicular to the shear plane, which
presumably is a close approximation of the transverse component of the permeability tensor. Overall, our
experiments substantiate the hypothesis that compacting magma will remain permeable down to low porosi-
ties (Table A3). Permeability may be reduced as the size of pores and pore apertures are reduced (Blower,
2001a; Rust & Cashman, 2004), but pore connectivity persists for the most part. In the presence of shear there
could also be an increase in connectivity, as indicated by some of the experiments (Figures 8b and 8d).

Percolation modeling cannot produce the high values of connectivity measured for experimentally deformed
samples or for effusively erupted natural samples (Figure 11b). Even at 𝜀 = 0 connected porosity is signif-
icantly smaller in percolation models (Figure 5a) than measured in the deformed Glass Mountain samples
(Figure 9b). Although not modeled here, higher connectivity can only be achieved in percolation mod-
els if bubbles are allowed to have nonspherical shapes (Garboczi et al., 1995; Yi & Sastry, 2004). This is
consistent with the interpretation that bubble elongation accounts to some extent for permeability in
compacted samples.

7. Conclusions

All explosively erupted samples considered herein are permeable and span porosities of approximately
0.6–0.9. Permeabilities can be fitted by power law with a porosity threshold of ≥0.6, potentially consis-
tent with thresholds observed in vesiculation experiments. Because of the lack of impermeable samples
a lower threshold can, however, not be ruled out. The lack of low-porosity explosive samples, which has been
interpreted to indicate that impermeable magma fragments to ash size (Rust & Cashman, 2011) could also
indicate that the entire magma was permeable when it reached fragmentation conditions. Effusively erupted
samples and experimentally compacted samples remain permeable down to low porosities. They show a
high degree of pore connectivity, regardless of porosity, suggesting that pore apertures, due to coalesced
bubbles, remain intact as magma compacts, albeit at reduced size. Shear deformation elongates and aligns
bubbles, and our results support the hypothesis that shear deformation enhances coalescence. Results are
consistent with the hypothesis that the effusive eruption of low-porosity silicic magma is facilitated by magma
remaining permeable down to very low porosities. To first order, the change in permeability during com-
paction can be described by an equation that accounts for decreasing bubble size, but future improvements
could address apparent changes in connectivity and permeability associated with shear deformation and
capillary stresses.
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Appendix A: Data Tables

Tables listing porosity and permeability measurements for the Glass Mountain Plinian samples (Table A1),
as well as deformation data for the Glass Mountain Plinian samples (Table A2) and resultant porosity and
permeability (Table A3) are presented. In addition, tables listing newly measured porosities and permeabilities
for Taupo Plinian fall samples (Table A4), El Cajete Plinian fall samples (Table A5), Long Valley (Bishop Tuff)
samples (Table A6), and Glass Mountain lava flow samples (Table A7) are presented.

Table A1
Porosity-Permeability Data for Glass Mountain Samples

Sample ID L (mm) D (mm) 𝜙t (%) 𝜙c (%) C (%) log10k (m2) log10 k∗ (m)

BGM2-1 13.22 19.91 78.33 75.70 96.64 −11.23 −7.55

BGM2-2 14.64 19.47 81.27 79.48 97.80 −11.56 −7.91

BGM4-1 15.89 19.24 80.33 70.19 87.38 −11.71 −8.00

BGM4-2 14.15 18.80 80.16 73.61 91.83 −10.93 −6.49

BGM4-4 16.83 18.81 82.66 77.49 93.75 −10.77 −5.81

BGM4-5 14.51 19.48 83.69 73.12 87.36 −11.86 −9.47

BGM5-1 24.55 19.79 75.34 72.11 95.71 −12.54 −8.60

BGM5-2 21.14 19.67 75.73 73.76 97.39 −13.07 −9.52

BGM6-1 17.82 19.78 73.84 64.77 87.72 −12.06 −7.98

BGM6-2 17.15 19.67 79.43 71.06 89.46 −11.14 −7.10

BGM6-3 16.20 19.70 72.43 61.84 85.38 −12.30 −8.25

BGM6-4 17.03 19.77 73.83 64.10 86.83 −11.86 −7.71

BGM6-5 16.17 19.73 71.66 61.15 85.33 −12.06 −7.93

BGM6-6 17.11 19.79 78.28 71.25 91.02 −12.34 −8.34

BGM6-7 13.96 19.65 73.05 62.15 85.07 −13.10 −9.65

BGM6-8 10.79 19.72 73.20 63.39 86.61 −12.74 −9.02

BGM6-9 15.33 19.79 80.84 75.30 93.15 −11.34 −7.03

BGM8-2 16.40 19.30 84.80 82.99 97.86 −10.77 −5.85

BGM8-3 24.41 19.56 73.98 69.18 93.51 −13.87 −10.33

BGM8-4 22.67 19.63 81.54 77.21 94.69 −12.30 −9.11

BGM8-5 18.50 19.57 78.71 74.72 94.92 −12.98 −9.11

BGM8-6 18.59 19.16 77.10 69.59 90.25 −11.14 −7.62

BGM8-7 25.52 19.37 78.65 73.02 92.85 −12.62 −9.29

BGM8-8 14.97 19.49 73.33 64.27 87.64 −13.27 −9.97

BGM8-9 18.10 19.65 76.30 69.67 91.31 −12.78 −9.47

BGM20-1 16.60 19.76 72.22 61.83 85.61 −13.31 −9.42

BGM20-3 14.61 19.77 75.51 66.75 88.39 −13.19 −9.56

BGM20-4 22.08 19.93 75.34 65.41 86.83 −10.89 −7.07

BGM21-1 15.61 19.27 78.89 73.26 92.87 −10.93 −6.40

BGM21-2 17.18 19.60 78.12 70.66 90.45 −11.89 −7.69

BGM21-3 17.22 19.36 80.36 79.82 99.32 −10.60 −6.53

BGM21-4 18.08 19.84 75.22 65.14 86.61 −12.50 −8.75

BGM22-1 14.24 19.64 71.29 66.18 92.84 −12.79 −8.51

BGM22-2 13.82 19.59 71.10 62.94 88.53 −12.35 −8.45

BGM22-3 24.69 19.82 75.04 69.43 92.53 −12.82 −9.43

BGM22-5 13.10 19.71 68.19 59.65 87.48 −13.99 −10.38

BGM22-6 18.70 19.86 74.33 69.28 93.21 −13.01 −9.38

BGM23-2 16.14 18.99 79.08 77.61 98.15 −10.96 −6.19

BGM23-3 16.92 19.83 72.06 67.65 93.88 −11.92 −6.91

BGM24-1 15.36 19.17 77.20 74.26 96.19 −11.02 −6.58

BGM24-2 12.99 19.32 76.28 73.10 95.83 −11.84 −7.27

BGM24-3 25.00 19.48 78.21 72.80 93.09 −13.58 −9.71
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Table A1 (continued)

Smple ID L (mm) D (mm) 𝜙t (%) 𝜙c (%) C (%) log10 k (m2) log10 k∗ (m)

BGM24-4 24.06 19.82 72.72 68.49 94.19 −11.98 −7.15

BGM34-1 19.82 19.64 86.52 85.98 99.38 −11.98 −8.12

BGM34-2 20.91 19.71 84.63 83.56 98.74 −12.37 −8.41

BGM37-1 19.62 19.85 78.19 73.95 94.57 −13.34 −9.62

BGM37-2 20.25 19.86 78.43 73.94 94.27 −13.22 −9.65

BGM-P-A2a-1 21.29 19.99 76.67 68.99 89.98 −13.06 −9.78

BGM-P-A2a-2 14.90 19.96 75.35 67.44 89.50 −13.11 −9.92

BGM-P-A2a-3 22.72 19.97 73.72 65.72 89.15 −13.89 −10.80

BGM-P-A2a-4 18.59 19.02 69.79 59.6 85.40 −14.91 −12.05

BGM-P-A2a-5 19.43 20.00 72.52 63.77 87.94 −14.51 −11.91

BGM-P-A2c 12.68 19.91 69.10 56.12 81.21 −13.19 −9.70

BGM-P-A2e-1 19.42 19.45 76.68 69.97 91.25 −13.39 −9.82

BGM-P-A2e-2 15.54 19.47 80.35 74.6 92.85 −11.73 −8.21

BGM-P-A2e-3 20.76 19.83 75.80 69.02 91.06 −13.21 −9.92

BGM-P-A2g-1 16.77 19.92 75.47 63.99 84.79 −12.92 −9.44

BGM-P-A2g-2 15.25 19.92 80.69 70.17 86.96 −12.81 −9.45

BGM-P-A2g-3 18.84 19.69 83.69 77.37 92.45 −12.12 −8.57

Table A2
Porosity-Permeability Data for Deformed Samples

log10 k[i] log10 k[f] (log10 k∗)[i] (log10 k∗)[f]

ID 𝜙
[i]
t 𝜙

[i]
c 𝜙

[f]
t 𝜙

[f]
c (m2) (m2) (m) (m) 𝛾 (mrad) 𝜀 (%)

BGM5-2 75.73 73.76 47.11 43.85 −13.07 −13.55 −9.52 −10.29 1583 −45.82

BGM6-2 79.43 71.06 74.13 70.7 −11.14 −10.51 −7.10 −6.50 312 −11.10

BGM6-6 78.28 71.25 71.25 66.04 −12.34 −12.27 −8.34 −8.11 669 −23.00

BGM6-8 73.2 63.39 40.73 36.79 −12.74 −14.44 −9.02 −10.87 1532 −43.96

BGM8-3 73.98 69.18 61.90 58.83 −13.87 −14.12 −10.33 −10.66 580 −23.97

BGM8-5 78.71 74.72 66.88 64.75 −12.98 −12.39 −9.11 −8.27 582 −19.02

BGM8-8 73.33 64.27 64.34 60.33 −13.27 −12.29 −9.97 −8.81 329 −11.07

BGM20-1 72.22 61.83 22.21 15.87 −13.31 −15.34 −9.42 −14.59 2155 −50.36

BGM20-2 76.68 67.96 32.01 26.69 −13.25 −14.98 −9.49 −12.27 2010 −54.93

BGM20-3 75.51 66.75 50.55 46.49 −13.19 −13.85 −9.56 −10.04 972 −34.41

BGM24-3a 78.21 72.80 71.28 69.14 −13.58 −13.27 −9.71 −9.79 380 −18.31

BGM24-3b 78.21 72.80 62.49 59.80 −13.58 −12.93 −9.71 −9.49 824 −36.89

BGM-P-A2a-5 72.52 63.77 40.25 32.15 −14.51 −14.78 −11.91 −11.82 1266 −37.89

BGM-P-A2e-1 76.68 69.97 58.22 54.67 −13.06 −13.69 −9.78 −10.07 943 −32.11

BGM-P-A2m-3 79.56 71.26 33.09 25.79 −11.94 −14.64 −8.15 −11.22 1804 −51.22

BGM-P-1B-1 69.53 59.37 42.42 40.01 −12.88 −14.00 −9.16 −10.28 1085 −36.94

BGM-P-3C-1 71.97 67.15 47.81 45.67 −12.66 −13.67 −8.93 −9.97 1170 −43.67

Note. Superscript [i] denotes value prior to deformation. Superscript [f] denotes value after deformation.

Table A3
Deformation Data

ID log10 𝛾̇
[i] (s−1) log10 𝛾̇

[f] (s−1) R[i] (mm) R[f] (mm) L[i] (mm) L[f] (mm) 𝜎 (N)

BGM5-2 −3.18 −4.05 7.05 6.48 9.69 5.25 2

BGM6-2 −2.91 −3.04 7.30 6.87 7.12 6.33 2

BGM6-6 −3.59 −4.64 7.50 7.15 11.00 8.47 2

BGM6-8 −3.04 −3.93 7.25 6.36 7.78 4.36 2

BGM8-3 −3.08 −3.46 7.36 6.8 8.22 6.25 2
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Table A3 (continued)

ID log10 𝛾̇
[i] (s−1) log10 𝛾̇

[f] (s−1) R[i] (mm) R[f] (mm) L[i] (mm) L[f] (mm) 𝜎 (N)

BGM8-5 −3.30 −3.70 7.51 7.03 6.1 4.94 2

BGM8-8 −3.19 −4.10 7.49 6.99 9.58 4.35 2

BGM20-1 −3.28 −4.20 7.48 6.67 9.71 4.82 2

BGM20-2 −3.27 −3.50 7.54 6.69 8.22 7.31 2

BGM20-3 −3.20 −3.73 7.35 6.54 8.37 5.49 2

BGM24-3a −3.03 −3.16 7.27 6.79 7.32 5.98 2

BGM24-3b −2.74 −3.26 7.35 6.84 7.40 4.67 2

BGM-P-A2a-5 −3.23 −3.95 7.17 6.28 8.63 5.36 2

BGM-P-A2e-1 −3.01 −3.49 6.88 6.28 8.75 5.94 2

BGM-P-A2m-3 −3.11 −3.96 6.95 5.99 9.43 4.60 2

BGM-P-1B-1 −3.15 −4.12 7.35 6.70 8.77 5.53 2

BGM-P-3C-1 −3.12 −3.81 7.3 6.57 9.55 5.38 2

Note. Superscript [i] denotes value prior to deformation. Superscript [f] denotes value after deformation.

Table A4
Porosity-Permeability Data for Taupo Plinian Fall

L D 𝜙t 𝜙c log10 k log10k∗

ID (mm) (mm) (%) (%) C (m2) (m)

TP-06-01 15.00 9.10 74.07 67.87 0.92 −13.62 −9.55

TP-21-11 20.03 9.04 74.02 67.79 0.92 −13.78 −9.72

TP-189-03 18.54 9.10 73.72 67.19 0.91 −13.49 −9.37

TP-18C-01-1 17.70 9.04 79.17 74.23 0.94 −13.51 −9.70

TP-18C-01-2 12.36 8.94 78.95 74.04 0.94 −13.72 −9.80

TP-18A-01 17.19 9.13 72.89 68.02 0.93 −13.89 −9.99

TP-18b-04-1 21.08 7.10 70.18 64.99 0.93 −13.91 −10.27

TP-18b-04-2 13.33 9.03 72.97 68.24 0.94 −13.59 −9.72

TP-18C-25 20.14 9.02 77.58 71.62 0.92 −13.17 −9.00

TP-17a-11 13.67 7.16 76.38 72.55 0.95 −13.83 −10.03

TP-18b-03-1 12.65 7.20 73.85 69.68 0.94 −13.93 −10.24

TP-18b-03-2 8.49 6.46 76.03 74.00 0.97 −13.67 −9.80

TP-16-04 28.00 9.18 79.42 71.84 0.90 −13.07 −8.92

TR09A-02 21.23 9.06 75.52 70.12 0.93 −13.67 −9.67

TP-07-10 17.01 7.08 74.67 73.08 0.98 −14.05 −10.66

TP-07-07 14.82 7.22 76.31 73.02 0.96 −12.94 −8.34

TP-21-04 14.96 9.20 73.37 57.64 0.79 −13.18 −8.81

TP-13a-03 14.66 9.07 76.95 71.00 0.92 −13.66 −9.74

TP-13b-04 19.04 9.02 76.58 69.64 0.91 −13.40 −9.35

TP-14-06 15.78 7.13 75.61 70.01 0.93 −14.02 −10.27

TP-15b-05 15.89 9.11 75.80 72.66 0.96 −13.51 −9.51

TP-15A-01-1 15.93 9.12 76.71 69.86 0.91 −13.77 −9.87

Table A5
Porosity-Permeability Data for El Cajete Plinian Fall

L D 𝜙t 𝜙c log10 k log10 k∗

ID (mm) (mm) (%) (%) C (m2) (m)

VC3-1 −16.31 18.99 81.47 78.59 0.96 −11.54 −7.12

VC3-2 16.62 18.96 81.52 78.43 0.96 −11.46 −6.94

VC4 15.21 19.19 83.4 83.19 0.99 −11.22 −6.04

VC5 14.78 19.67 73.11 67.87 0.93 −12.38 −7.98
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Table A5 (continued)

L D 𝜙t 𝜙c log10 k log10 k∗

ID (mm) (mm) (%) (%) C (m2) (m)

VC7 15.51 19.75 73.97 69.35 0.94 −12.26 −7.84

VC8-1 16.49 19.84 77.76 75.08 0.97 −12.34 −8.57

VC8-3 24.22 19.84 76.62 74.70 0.97 −12.42 −8.43

VC8-4 16.83 19.84 75.28 73.11 0.97 −11.77 −7.91

VC8-5 24.56 19.84 79.50 78.04 0.98 −11.54 −7.93

VC8-6 22.80 19.86 78.50 76.44 0.97 −11.62 −7.48

VC9-1 16.04 19.81 78.88 75.85 0.96 −12.14 −8.12

VC9-2 22.44 19.96 78.84 75.27 0.95 −11.42 −6.71

VC10-2 14.84 18.67 83.31 81.23 0.98 −11.53 −7.23

VC10-3 18.92 19.72 83.27 80.98 0.97 −11.19 −6.71

Table A6
Porosity-Permeability Data for Long Valley Samples

L D 𝜙t 𝜙c log10 k log10 k∗

ID (mm) (mm) (%) (%) C (m2) (m)

LV-BT-P-1-1 16.65 19.84 70.69 61.34 86.77 −12.26 −8.16

LV-BT-P-1-2 15.13 19.86 69.75 68.65 98.42 −13.06 −9.29

LV-BT-P-1-3 17.84 19.83 71.72 63.51 88.55 −12.72 −8.92

LV-BT-P-1-5 20.23 19.57 70.25 69.52 98.97 −13.11 −9.38

LV-BT-P-1-6 15.64 19.82 70.80 69.30 97.89 −13.01 −9.37

LV-BT-P-1-7 18.24 19.64 70.85 68.87 97.21 −13.51 −9.74

LV-BT-P-1-8 21.89 19.80 71.67 69.83 97.43 −12.22 −8.70

LV-BT-P-2-1 16.17 19.95 65.13 58.31 89.53 −11.54 −7.62

LV-BT-P-2-2 16.14 20.03 64.10 56.01 87.38 −11.66 −7.75

LV-BT-P-3-1 16.07 19.90 74.45 71.10 95.51 −12.34 −8.84

LV-BT-P-3-2 13.08 19.86 74.20 70.36 94.82 −12.42 −8.61

LV-BT-P-4-1 15.22 20.02 67.54 64.59 95.63 −13.42 −9.47

LV-BT-P-4-2 12.18 19.82 69.27 67.01 96.74 −11.70 −8.21

LV-BT-P-5-1 15.02 19.85 70.90 68.44 96.53 −12.46 −8.75

LV-BT-P-5-2 12.46 19.95 73.60 70.59 95.91 −12.38 −8.66

LV-BT-P-6 17.78 19.92 66.88 62.70 93.75 −12.34 −8.25

LV-BT-P-7-1 15.56 19.95 68.29 62.79 91.95 −13.23 −9.88

LV-BT-P-7-2 16.78 19.89 67.65 61.94 91.57 −13.43 −10.15

LV-BT-P-8 14.07 19.89 68.21 62.61 91.79 −11.86 −8.12

LV-BT-P-9 13.66 20.00 63.69 56.31 88.41 −14.15 −10.92

LV-PC-10-1 15.36 19.92 71.92 71.39 99.26 −12.14 −7.62

LV-PC-10-2 19.47 19.70 71.90 71.15 98.96 −12.18 −7.62

LV-PC-10-3 19.70 19.90 72.55 70.95 97.80 −12.06 −7.53

LV-PC-10-4 20.14 19.88 72.83 71.58 98.28 −11.46 −6.40

LV-PC-11-1 19.18 19.91 66.29 63.97 96.51 −11.94 −7.84

LV-PC-11-2 12.49 19.88 67.37 65.48 97.19 −11.30 −7.26

LV-PC-11-3 18.53 19.90 66.64 64.52 96.83 −11.70 −7.62

LV-PC-11-4 20.53 19.87 66.24 63.87 96.42 −12.02 −8.03

LV-PC-12-1 23.29 19.80 65.45 62.65 95.72 −12.98 −9.29

LV-PC-12-2 19.47 19.89 65.66 63.36 96.50 −13.07 −9.25

LV-PC-12-3 16.61 19.93 66.52 63.72 95.78 −13.07 −9.47

LV-PC-14-3 19.73 19.51 73.92 74.23 100.41 −11.22 −6.29
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Table A7
Porosity-Permeability Data for Glass Mountain Lava Flow

L D 𝜙t 𝜙c log10 k log10 k∗

ID (mm) (mm) (%) (%) C (m2) (m)

BGM11-1 17.90 19.86 60.03 58.49 97.43 −10.81 −5.58

BGM11-3 16.54 19.92 57.86 56.35 97.39 −11.22 −7.08

BGM11-4 16.39 19.80 66.48 65.66 98.77 −10.81 −4.77

BGM11-5 22.43 19.60 57.58 55.22 95.90 −11.18 −6.89
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Figure B1. Inertial (non-Darcian) permeability, k∗ , as a function of Darcian permeability, k. Lines are least squares fit
according to equation (B1).

Appendix B: Darcian and Inertial Permeabilities

A well-defined functional relation between Darcian permeability, k, and inertial permeability, k∗, exists for
all samples (Figure B1). Shown in Figure B1 is the least squares linear fit based solely on the Glass Mountain
Plinian and deformed samples, together with 95% confidence intervals. The fit is given by

log10(k∗) = 1.353 (±0.088) × log10(k) + 8.175 (±2.237) (B1)

and results in a root-mean-square error in log10(k∗) of 0.4466. The fit is similar to the broad relationship found
for other volcanic samples, and we refer, for example, to Burgisser et al. (2017, and references therein) for a
more in-depth discussion.

Notation

Vesicularity Determination

C = 𝜙c∕𝜙t = Vesicle connectivity;
L = Sample length;

Mt = Mass;
R = Sample radius;

Vc = Vt − Vs = Connected volume of vesicles within sample;
Vm = Mt∕𝜌m = Volume of solid matrix;

Vs = Skeletal volume;
Vt = Envelope volume;
𝜌m = Average matrix density from Vm and mass of crushed sample;
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𝜙c = Vc∕Vt = Connected porosity;
𝜙t = (Vt − Vm)∕Vt = Total porosity.

Permeability determination

k = Darcian permeability coefficient (equation (1));
k∗ = Non-Darcian permeability coefficient (equation (1));

q = Flow rate of air during permeability measurement;
N = Number of measurement points per permeability measurement;

P1 = Inlet pressure during flow rate measurement;
P2 = Outlet pressure during flow rate measurement;
𝜂g = Viscosity of air.

Analysis

a = b ⋅ r2 = Constant;
b = Fitting parameter (equation (2));
n = Fitting parameter (equations (2)) and equation (11);
r = Average vesicle radius obtained from analysis of SEM images;
𝛼 = Fitting parameter (equation (1));
𝛽 = Fitting parameter (equation (4));
𝜖 = Measured axial strain during sample deformation;
𝜀 = Geometrical parameter in percolation model;
𝛾 = Shear stress during sample deformation (equation (7));
𝛾̇ = Shear rate during sample deformation;
𝜆 = Fitting parameter (equation (4));
𝜃 = Measured deflection angle during sample deformation;
𝜎 = Applied normal force during sample deformation;
𝜏 = Shear stress during sample deformation (equation (8));

𝜙cr = Estimated percolation threshold;
Γ = Applied torque during sample deformation;
Ω = Rotation rate during sample deformation.
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