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Abstract we propose a new bubble dynamics model to study the evolution of a suspension of bubbles
over a wide range of vesicularity, and that accounts for hydrodynamical interactions between bubbles
while they grow, deform under shear flow conditions, and exchange mass by diffusion coarsening. The
model is based on a lattice Boltzmann method for free surface flows. As such, it assumes an infinite viscosity
contrast between the exsolved volatiles and the melt. Our model allows for coalescence when two bubbles
approach each other because of growth or deformation. The parameter (disjoining pressure) that controls
the coalescence efficiency, i.e., drainage time for the fluid film between the bubbles, can be set arbitrarily

in our calculations. We calibrated this parameter by matching the measured time for the drainage of the
melt film across a range of Bond numbers (ratio of buoyancy to surface tension stresses) with laboratory
experiments of a bubble rising to a free surface. The model is then used successfully to model Ostwald
ripening and bubble deformation under simple shear flow conditions. The results we obtain for the
deformation of a single bubble are in excellent agreement with previous experimental and theoretical
studies. For a suspension, we observe that the collective effect of bubbles is different depending on the
relative magnitude of viscous and interfacial stresses (capillary number). At low capillary number, we find
that bubbles deform more readily in a suspension than for the case of a single bubble, whereas the opposite
is observed at high capillary number.

1. Introduction

Exsolved volatiles provide the driving force for explosive volcanic eruptions. While the magma is ascend-
ing to the surface, the melt becomes supersaturated with volatiles driving bubble nucleation and growth.
The increasing vesicularity of the magma during decompression affects its buoyancy (provides an accel-
eration) and deeply affects the physical properties of the magma [Gonnermann and Manga, 2007]. The
processes that control the nucleation and growth of gas bubbles (water and CO,, mostly) are complex and
highly nonlinear.

Bubbles gain mass by diffusion during decompression as the solubility of gas in the silicate melt is sup-
pressed, and simultaneously, they grow by mechanical expansion due to the compressibility of the gas
phase. On the other hand, the viscosity of the surrounding melt opposes a resistance to bubble growth.
The interplay between diffusion of volatiles, expansion and viscous resistance during the growth of a single
bubble or a periodic suspension of monodisperse bubbles in an infinite silicate melt as been studied the-
oretically and numerically by Gaonac’h et al. [1996], Lensky et al. [2004], L'Heureux [2007], Lyakhovsky et al.
[1996], Proussevitch et al. [1993a], Proussevitch and Sahagian [1998], Sparks [1978], Toramaru [1995], and
Yamada et al. [2008]. These studies were able to identify different growth regimes, such as viscosity and
diffusion controlled, and also highlight the important effect of spatially variable viscosity and water diffu-
sivity in these processes. Even though some of the bubble dynamics models cited above differ in terms of
approaches, they share some common assumptions. The first assumption made is that bubbles have little
to no hydrodynamic interactions between each other and also with rigid/partially rigid confining bound-
aries. In other words, bubbles remain spherical at all times, deformation between bubbles that are coupled
hydrodynamically or of a bubble that interacts with a boundary (conduit wall, for example) are not taken
into account. Even if the studies of Gaonac’h et al. [2005] and Yamada et al. [2008] consider the effect of coa-
lescence into their bubble population dynamics model, it is introduced as a simple parameterization and
does not account for the actual mechanics of the process.

The inability of previous bubble growth models to account for bubble deformation, coalescence, and bub-
ble deformation under different flow environments (uniaxial decompression and shear) hampers their
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applicability to magmas with moderate to high vesicularities. However, the effect of bubbles on the evolu-
tion of the ascending magma increases with its vesicularity. Ultimately, prior to the onset of fragmentation,
it is the rheological state and pressure distribution in a high vesicularity suspension (commonly greater than
50%) that controls the eruption dynamics [Gonnermann and Manga, 2003; Proussevitch and Sahagian, 1998;
Sparks, 1978; Zhang, 1999]. In this paper, we describe a new model that is designed to investigate the physi-
cal evolution of bubble suspensions in magmas across a wide range of vesicularities (from a few to > 50%)
subjected to different decompression and shear flow conditions.

Our model differs significantly from other published bubble growth models in that it is based on a numer-
ical approach that allows us to deal with deformed bubbles and resolves the hydrodynamical interactions
between individual bubbles. In section 2, we review in greater details the existing bubble dynamics models
in physical volcanology. We also discuss the advantages and limitations of our model in the light of the exist-
ing models. The physical and numerical model is presented in section 3. Model validation for the growth of
bubbles by expansion and diffusion are presented in section 4. It is followed by tests of the model’s ability
to go beyond the limitations of existing bubble growth models. The first set of calculations consists of the
ascent of a single bubble (no mass change) to a free surface and the subsequent film drainage that results in
the bubble bursting at the surface. These calculations serve to calibrate a free parameter in our model, the
disjoining pressure, which controls the efficiency of the drainage process, and by extension of coalescence.
We use a set of experiments with an identical design to calibrate the disjoining pressure as function of the
bubble Bond’s number (ratio of buoyancy to surface tension stresses). The objective of the next series of cal-
culations is to test the model accuracy with scenarios of bubble-bubble or bubble-structure interactions.
We focus first on Ostwald ripening, where the thermodynamical coupling between two neighbor bubbles
of different sizes leads the growth of the larger bubble at the expense of the smaller one in response to
chemical potential gradients between bubbles of different sizes. Lastly, we test the model’s ability to resolve
accurately the viscous and capillary coupling between bubbles and the ambient melt in simple shear flow
conditions. When inertia can be neglected, single bubbles are expected to reach a known steady shape
(deformed when viscous stresses are important) and a known final orientation that depends on the balance
between shear and capillary stresses. Finally, we use our model to study the evolution of the average defor-
mation and orientation of bubbles in a suspension in contrast with calculations involving a single bubble.
This allows us to quantify the effect of bubble-bubble hydrodynamic interactions on a sheared suspension.

2, Bubble Dynamics Models

Our understanding of bubble growth in viscous silicate melts has made significant progress over the last
three decades, thanks to combined experimental [Gardner et al., 2000; Larsen and Gardner, 2004; Larsen et al.,
2004; Lyakhovsky et al., 1996; Mangan and Sisson, 2000; Navon et al., 1998; Okumura et al., 2006, 2008, 2009],
theoretical, and numerical efforts [e.g., Blower et al., 2001; L'Heureux, 2007; Lensky et al., 2004; Proussevitch

et al., 1993a; Proussevitch and Sahagian, 1998; Sparks, 1978].

In this section, we present a brief overview of the field of bubble dynamics models in physical volcanology.
Since the seminal work of Verhoogen [1951], it has been recognized that exsolved volatiles (bubbles) can
play a significant role on the behavior of magmas during volcanic eruptions. Subsequently, Sparks [1978]
developed a model of a single bubble growing in an infinite melt, where the growth of the bubble is caused
by expansion and mass transfer (diffusion) during decompression and is hampered by the viscosity of the
melt. The transport of dissolved volatiles to the bubble’s interface was not explicitly solved for, but the
growth rate due to diffusion was parameterized according to a parabolic growth law.

2.1. Population Dynamics Versus Single Bubble and Shell Models

In the late 1980s and early 1990s two different categories of multiple bubble growth models were simul-
taneously developed. In the first family of models, diffusion of volatiles to the bubbles is parameterized
(mean-field approach), but polydispersed bubble size distribution are allowed [Gaonac’h et al., 1996;
L'Heureux, 2007; Toramaru, 1989, 1995; Yamada et al., 2008]. These models assume that the bubbles remain
spherical (no deformation), and with the exception of Gaonac’h et al. [2005], coalescence is not taken into
account. An advantage of these models, over the second family of models discussed just below, is that
they allow the inclusion of several nucleation events, although the competition for dissolved water during
growth is not explicitly taken into account.
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The second family of models is based on the work of Proussevitch et al. [1993a], where the multiphase
magma is represented as a monodisperse periodic array of spherical bubbles surrounded by a viscous melt
shell [Blower et al., 2001; Lensky et al., 2004; Lyakhovsky et al., 1996; Proussevitch and Sahagian, 1998]. This
idealization was made to solve for the evolution of a single bubble-melt shell system with a radial symme-
try. The model solves for the diffusive transport of dissolved volatiles to bubbles explicitly, as well as for the
existence of radial gradients in water concentration and its effects on the melt viscosity and water diffusivity
[Blower et al., 2001; Lensky et al., 2004; Proussevitch and Sahagian, 1998]. These models provide an accurate
representation of the coupled momentum balance and diffusive transport of volatiles at the cost of an ideal
geometry and a suspension that remains monodisperse at all times.

2.2. Results From Previous Studies

The two types of approaches have led to important results about the different regimes of bubble growth
[Proussevitch et al., 1993a; Lensky et al., 2004], the effect of viscosity and diffusivity radial heterogeneities
on bubble growth [Blower et al., 2001; Lensky et al., 2004; Proussevitch and Sahagian, 1998] and the effect
of supersaturation on the nucleation of new bubbles and how it translates into changes in bubble num-
ber density and size distributions [Toramaru, 1989, 1995; Yamada et al., 2008]. Nevertheless, they have been
limited to low vesicularity by several assumptions. The first assumption concerns the limited hydrodynamic
coupling between bubbles and between the melt and bubbles. Bubbles are not allowed to deform and
remain spherical. The behavior of a bubble of radius r during shear deformation can be constrained by the
capillary number

Ca=——, (1

where ¢ is the surface tension, p is the melt density, ¢ is the shear rate, and v the kinematic viscosity of the
melt. At high capillary numbers (Ca > 0.1) bubbles are expected to accommodate a large portion of the
shear and the spherical assumption becomes invalid [Manga et al., 1998; Manga and Loewenberg, 2001].
Although shear deformation of bubbles should be expected to play a significant role mostly in melts with
high viscosity or for large bubbles, the hydrodynamic coupling between bubble and melt and between
multiple bubbles is also expected to play a significant role in magmas with high vesicularity. The second
argument that restricts the standard bubble growth models to low vesicularity is that they do not account
explicitly for the competition for dissolved volatiles during the growth of bubbles of different sizes, or with
different separation distances. Bubbles with different spacing, different size, and different internal pres-
sures will be responsible for variable gradients in dissolved water content in the melt, potentially leading to
implicit nonlinear interactions among neighbor bubbles. The dynamics of coalescence has been avoided,
at least explicitly (besides the Smoluchowsky approach of Gaonac’h et al. [2005]), but it has been shown
that at vesicularities of about 40%, expansion and growth can lead to significant coalescence and that this
effect becomes even more important at lower vesicularity in a suspension subjected to shear [Burgisser and
Gardner, 2004; Okumura et al., 2006, 2008]. Another implicit assumption common to all previous models

is that there is no respective motion between the center of mass of a bubble and the ambient melt. This

is a good approximation for small bubbles and melts with high viscosity, but it is expected to break down
in the other cases or when connected pathways start to form between coalesced bubbles and gas-melt
segregation occurs.

2.3. Motivation for the New Heterogeneous Bubble Dynamics Model

In this study, we develop a new bubble dynamics model to overcome the aforementioned limitations of
existing models. The aim of this model is to keep an explicit description of the mass transport of dissolved
water by diffusion in the melt, but without the restriction of radial symmetry and the assumption of limited
bubble interactions. In other words, the new model provides the ability to solve for bubble deformation
and coalescence. In addition, we are able to consider enough randomly distributed bubbles to track the
evolution of polydisperse bubble size distributions. Finally, the new model allows us to investigate the effect
of an imposed shear rate on the rheological behavior of the suspension and on the bubbles coalescence rate
by solving for the finite and spatially variable motions between each bubble’s center of mass on the melt
surrounding bubbles.
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Before describing the new model in detail, we list some of the present (should be overcome in future
studies) and absolute limitations of our model.

1. The model is discretized in space on a homogeneous grid; it is therefore not accurate in terms of water
concentration profile at the early stage of degassing. The model of Proussevitch et al. [1993a] is expected
to yield more accurate results at low vesicularity. However, at later stages, when the vesicularity is greater
and the diffusion profile less steep, the accuracy of the diffusion model will be much improved, because
it is accurate to the second order in space. Although the spatial resolution is an issue for the accuracy of
the diffusion model at early times, we want to emphasize that film drainage between bubbles and coa-
lescence, which are solved by a Volume-of-Fluid method (see below), use a mass balance description that
has a subgrid spatial resolution.

2. The model is, as of now, limited to 2-D calculations. An extension to 3-D is not trivial (calculation time)
but nothing should prevent it in the near future. Although the existing models discussed above are
intrinsically 3-D, they assume a perfect radial symmetry and therefore reduce the physics to 1 dimension.

3.In this study, water-dependent melt viscosity and diffusivity were not taken into account. We plan on
addressing this issue in a future study. There are no formal limitations regarding heterogeneous vis-
cosity and diffusivity in the lattice Boltzmann method, because the relaxation times for the discrete
Boltzmann equations that represent momentum and mass conservation can be varied locally without any
subsequent change in the algorithm.

3. Numerical Method

The lattice Boltzmann method (LBM) has emerged as an efficient alternative to traditional Computational
Fluid Dynamics solvers and was developed as an extension to cellular automata [Frisch et al., 1986; Higuera
et al., 1989]. The LBM solves for the evolution of particle distribution functions according to simple rules
and follows a discretized form of Boltzmann's kinetic equation. The model we use for bubble dynamics is an
extension of the model proposed by Koerner et al. [2005] where the fluid inside bubbles is assumed inviscid
and interfaces between the two fluids are treated as a free surface boundary condition. In this section, we
describe the model and introduce some of the extensions that were required to adapt it to decompression
and shear flow conditions.

3.1. The Lattice Boltzmann Model for Free Surfaces

The lattice Boltzmann free surface method on which our bubble model is based has been used successfully
by different authors to measure dynamic contact angles and study metal foaming processes and free sur-
face flows [Attar and Koerner, 2009; Koerner et al., 2005]. Within the LBM, Boltzman'’s equation is commonly
discretized in physical and velocity spaces so that particle distribution functions, at a given lattice site, can
stream along a finite number of directions (lattice velocity vectors) and reach a neighbor site at the next
time step. In general, in 2-D, a topology with one rest velocity e, = (v,, = 0,v,, = 0) and eight finite veloc-
ity vectors connecting the site to its nearest neighbors is used. This nine velocity lattice topology is usually
referred to as the D,Q, lattice (see Figure 1a) with velocities e,

(0,0) ifi=0
e = cos(% ,sin %)) i=1,...4 Q)

<cos<w>,sin<w>) i=5,...8.
4 4

The evolution equation for the particle distribution functions f, (where i stands for the discrete velocity
vector along which the particles are moving) uses a linearized collision operator, often referred to as the BGK
[Bhatnagar et al., 1954] or single relaxation time operator [Qian et al., 1992]. The update of the distribution
between two consecutive time steps (t and t + 1) is given by

Fx+e,t+1) = £(x, ) + —[F9x, B — £(x, 0] + F, 3)
Tr
where x are the spatial coordinates on the lattice, t is time, £ is the equilibrium distribution (defined below),
and F; represents a body force acting on the distribution f.. The relaxation time z, is explicitly related to the
kinematic viscosity of the fluid

v=a(n-2). )
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Figure 1. Discretization of the particle distribution functions in velocity space. The two choices of lattice used (a) for the viscous fluid
flow around bubbles (D,Q,) and (c) for the advection-diffusion equation for the dissolved volatile concentration (D,Q,). (b) An illustration
of the Volume-of-Fluid approach used for the lattice Boltzmann free surface model is shown. The domain is divided among three cell
types: bubble cells where no dynamics is computed, melt/fluid cells where Navier-Stokes and the advection-diffusion equations are
solved, and interface cells that separate the other two types and act as boundary conditions between bubbles and ambient melt.

where ¢? is a constant of the lattice (one third on the D,Q,). The local fluid density and momentum (and
hence velocity) can be retrieved as moments of the particle distribution functions

8 8
p(x,t) = Zf,. and p(x,Hux,t) = 2 ef. (5)
i=0

i=0

The equilibrium distribution is a quadratic function of the local fluid velocity and depends linearly on
the density

e u-e, 1(u-e) 1lu-u
F000) = Wip(x, 1) |14 —= 4 5 = s 2 | ©)

where w, are the lattice weights, w, = 3, w, , = é, andw, , = ;—6 This generic model was shown to recover
the Navier-Stokes and the continuity equations with second-order accuracy in space and first-order accuracy
in time [Higuera et al., 1989; Qian et al., 1992]. For simplicity, we subdivide equation (3) into two steps: the
collision step

P, ) = £(x,8) + [F(x, 8) — £(x, D] + %
Te

and the streaming step

f'(x +e,t+1)=x,1). (8)

The free surface model developed by Koerner et al. [2005] uses an approach similar to the Volume-of-Fluid
method, where a continuous scalar occupancy field m allows to track the position and evolution of the inter-
face between two fluids (here bubble and silicate melt). The lattice is divided among three cell types: gas,
melt, and finally interface cells (see Figure 1b). The type of each cell is updated dynamically according to the
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local evolution of the scalar quantity m. The field variable m represents the fluid mass content of the cell and
is given by

0 if x € gas cell
m(x,t) = p(x,t) if x € melt cell 9)
p(x, e(x, t) if x € interface cell.

where ¢ is the volume fraction of melt at site x and time t (between 0 and 1). An evolution equation for the
distribution of each cell type is required because bubbles and melt can move with respect to the lattice,
while simultaneously bubbles can expand and grow. The evolution equation for m follows the procedure
described in Koerner et al. [2005] and consists of tracking the mass exchange between neighbor sites of each
cell type

0 if x € gas cell
Am(x,t) =4 Af* = f;’“‘(x +e,0) —f(x,t) if x€ meltcell (10)
He(x, ) + e(x + e, )Af" i x € interface cell.

where e; = —e,. Koerner et al. [2005] showed that this scheme conserves mass locally and that m can now be
updated at each site using

8
m(x,t+ 1) =mx,t) + Z Amj(x, t). (1)

i=0
Obviously, the mass content of each cell must stay bounded 0 < m(x,t) < p(x,t), which is enforced by
imposing the following set of rules: if m > p, the cell is converted to a melt cell; if m < 0, then it is converted
to a gas (bubble) cell. Similarly, new interface cells are created when a former melt cell evolves so thatm < p
or when the mass content of a gas cell becomes greater than 0 (m > 0). A more complete description of the
mass redistribution algorithm can be found in Koerner et al. [2005].

Because the viscosity ratio between the melt and the gas bubbles is generally greater than 107, we assume
that the bubbles are inviscid. That allows us to treat the effect of bubbles on the melt as boundary condi-
tions similar to free surfaces, i.e., no tangential stress, but existing pressure drop at the interface between
the two fluids caused by interfacial tension and density difference between the two fluids. If the gas pres-
sure is known, we can apply a pressure boundary condition on the melt. We assume that the gas within the
bubble behaves ideally

p, ="~ (12)

where n is the number of moles of gas molecules in a given bubble, V its volume, T the ambient temperature
(here assumed constant), and R the ideal gas constant.

In the free surface algorithm, the effect of the bubble at the interface with the melt is an imposed pressure
boundary condition. At any given interface cells, some elements f, of the particle distribution functions are
missing because they carry information from a gas cell (outside of the domain where the f’s are defined) to
the interface cell. These missing distributions are reconstructed to impose the correct boundary condition
on the melt, using information from the gas pressure in the bubble and the curvature of the interface at the
interface site. For more details about this procedure, the reader is referred to Koerner et al. [2005].

The effect of surface tension ¢ between gas and melt can be added to the gas-interface boundary
conditions as
n(HRT

v(t)

where n(t) and V(t) are the number of moles of gas molecules (here we focus on water) and the volume
of the bubble, respectively, and k(x, t) is the local curvature of the interface. When considering multiple
bubbles interacting with each other, or the interaction of a bubble with a free surface, an additional term is
included in the pressure boundary condition

p,(x,t) = - 2k(x, ), (13)

_ n(tRT

—2k(x,t)o —1II, (14)
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which is the disjoining pressure I1. The disjoining pressure is defined as the variation of Gibbs free energy
with distance associated with the interaction of two melt-gas interfaces associated with different objects
(e.g., two different bubbles or a bubble and a free surface)

1 /0G

M=—— (—) : 15
A \ ox (1)

where A is the surface area of the interacting surfaces and G is the Gibbs free energy. The disjoining pressure

has a fundamental impact on controlling the coalescence rate between bubbles and therefore the stability

of suspensions. For simplicity, the disjoining pressure can be taken as a linearly decreasing function of the

distance between the two interacting objects with a finite range d,

nd,,) = { cld
T

int

range

0 If dint 2 drange
d if d <d (16)

rangel int range*

The disjoining pressure is therefore set by two constants: its amplitude ¢, and range d, as well as the

distance between the two interacting interfaces neighbor objects d,..

range’

We discuss how the disjoining pressure model is calibrated from experiments in section 4. We note, how-
ever, that keeping track of the mass content in each interface nodes allows us to accurately model the
coalescence of bubbles (if the disjoining pressure term is correctly calibrated) which occurs when the fluid
content of the interface node separating to adjacent bubbles has fully drained out of the interface. Finally,
for all calculations involving solid surfaces, the contact angle between the interface separating the two fluid
phases and the solid boundaries is such that the gas phase is nonwetting.

3.2. Decompression Scheme

During volcanic eruptions, decompression exerts a major control on the physical state of the magma. The
change in pressure influences the density of the gas phase and also the solubility of the volatile species
dissolved in the melt. A large number of experiments were designed to study the growth regime of sus-
pensions under different decompression conditions, from a static decompression (instantaneous pressure
drop) to constant decompression rates [Burgisser and Gardner, 2004; Gardner et al., 1999, 2000; Larsen and
Gardner, 2000]. While many of these studies focused on the transition from equilibrium to nonequilibrium
bubble growth, as function of imposed decompression rates and melt viscosity [Gardner et al., 1999, 2000;
Navon et al., 1998], other studies investigated the effect of bubble-bubble interactions on the growth rate of
a suspension [Larsen and Gardner, 2000], the vesicularity at the onset of coalescence [Burgisser and Gardner,
2004; Larsen et al., 2004], and the effect of shear on coalescence and the formation of outgassing permeable
pathways [Okumura et al., 2009].

During decompression, two processes lead to bubble growth: (1) mechanical expansion (no mass exchange
between the melt and the suspension) and (2) degassing by diffusion from a supersaturated melt to adja-
cent bubbles. In this section, we focus first on mechanical expansion. In order to account for decompression,
we modified the scheme presented above to allow for the pressure in the gas phase to evolve in response
to the change of ambient pressure. We assume a pressure reference frame where the pressure in the ambi-
ent melt p,.,, (which is supposed to follow closely the decompression pressure path) is constant over a given
run. In that reference frame, the pressure inside bubbles is expected to increase if the decompression rate
is fast enough for the growth of the bubble to be impeded by the viscous melt. Assuming a decompres-
sion rate in the melt (dp/dt),,. (< 0 for decompression), the pressure evolution in bubbles does not follow
equation (12), but rather

dp, 1dn  ndv dp
E‘RT[VE_WE]_<E>M’ a7
where the number of moles of gas n is allowed to evolve with time (in the case of exsolution). The volume of
gas in a bubble V can change in response to mechanical expansion and if n increases by diffusion of water
from the melt. The effect of surface tension and the disjoining pressure can be added into the boundary
condition similarly to equation (14). In the limit where diffusion of dissolved water is neglected, the pressure
evolution reduces to

dpg n dv dp
— =—RT—-— - = 1
dt V2 dt <dt>dec’ 18)
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where the pressure equilibrium between the melt and the bubbles (no residual overpressure) is reached
when the volume change of bubbles accommodates all the decompression of the modeled magma parcel,
which occurs only when the growth of bubbles is not viscously limited.

Although not the focus of this paper, the decompression model presented here does not restrict us from
studying the effect of nonuniform decompression rates. Equation (17) can limit the choice of time steps
(small time steps) for large decompression rates, as the pressure in the bubble must remain > 0. However,
the scheme was found to be stable over the whole range of calculations presented in this study.

3.3. Volatile Diffusion and Bubble Growth

In order to allow for the degassing of dissolved volatiles, the model needs to account for diffusion of
dissolved volatiles in the melt. We use a similar approach to Koerner et al. [2005], where a second set of distri-
bution functions g; is used to model an advection-diffusion equation with imposed concentration boundary
conditions at the bubble-melt interfaces. Because the advection-diffusion equation requires less symmetry
than the momentum conservation in the lattice Boltzmann method, we use a different lattice topology with
four velocities (D,Q,, see Figure 1c). The lattice nodes for g; coincide with the D,Q, lattice used for the flow
calculations. A similar discretized Boltzmann equation can be solved for the dissolved volatile concentration

L
gx+e.t+1)=gx.0+ —[gx.0—gx 0l (19)
G
where the velocity indexj = 1, ..., 4 (see equation (2)). The relaxation time 7 is related to the diffusion
coefficient of the dissolved volatiles in the melt
1
D0 = ¢, (rG - 5) , (20)
and the constant 2. = % for the D,Q, lattice. The local dissolved water content is retrieved from the
distribution with
4
Cx b= gx0, (21)

j=1

and the equilibrium distribution is given by

. €-u
g/.q(x, =wC(x, 0|1+ = , (22)
sG
where the velocity u is obtained from the Navier-Stokes solver (from the distributions f), w;; = i fori =
1, ..., 4 are the lattice weights for the distributions g; corresponding to the four discrete velocity vectors

€, which point East-North-West-South (see Figure 1). The equilibrium distributions are therefore a function
of the local flow velocity and the local concentration only. The water dependence of the diffusivity can be
easily included in the model by setting the relaxation time z, to be a function of the dissolved water content
C. This effect will not be explored here but will be part of a subsequent study. This lattice Boltzmann model
for advection diffusion was shown to recover the advection-diffusion equation [Suga, 2006]

% +u-VC=V- <DH20VC> : (23)

We impose the dissolved water content in the melt at a bubble-melt boundary to follow Sievert’s law
C(x,t) =S4/p,, X E Interface cell (24)

with S the Sievert's constant and P, the bubble’s pressure [Burnham, 1975; Sparks, 1978]. This boundary con-
dition at the interface site is imposed by setting the missing distributions (coming from the adjacent gas
cell) g, to

g, = gU(C,, w) + g3 (G, w) — g (G, 1), (25)

while the other g;'s are set to g;(C,, u). In equation (25), the overbar defines the opposite velocity direction,
e.g., North = South. The bubble model, including the diffusion of the dissolved volatiles, at the exception of
the decompression scheme, has been validated in previous studies [Koerner et al., 2005].
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To allow for degassing and bubble growth during decompression, the decompression rate (dp/dt),,. should
be included into the advection-diffusion scheme for dissolved water in the melt. As the pressure exerts only
a second-order effect on the diffusivity of dissolved water in the melt, we will not consider this effect here.
Following the decompression scheme described above, where the pressure reference frame follows the
pressure of the ambient melt, the decompression rate is expected to play a role in the solubility of water at
the bubble-melt interface. We therefore introduce the decompression of the suspension into our boundary
condition with

t

_ dr
C,x0=S pg+/ <dt)decdt. (26)

0
A first note concerns the sign of (dp/dt),..; because it is negative, the decompression term leads to a
decrease in solubility with time. However, if the bubble growth is limited by the viscosity of the ambient
melt, the overpressure buildup in the bubble in response to the decompression can ideally compensate for
the decompression of the magma, and in that particular case, the solubility of water at the bubble interface
should remain constant as is expected from the expression above.

4, Validations

A detailed description of benchmark problems solved with the generic free surface lattice Boltzmann model
can be found in Koerner et al. [2005]. Here we focus on validations of our model compared to analytical solu-
tions (expansion) and published experimental and numerical results of single bubble growth to test our
decompression scheme.

4.1. Single and Multiple Bubble Growth by Expansion During Decompression

The following calculations are meant to test if the pressure evolution equation (equation (17)) allows us

to solve for the expansion of a bubble or a bubble suspension (up to 120 different bubbles) during a con-
stant decompression rate experiment, in the absence of degassing (no diffusion growth). All the runs
presented here use similar initial conditions, we normalize pressure with regard to the initial ambient pres-
surep, .(t = 0) = 1,and start with N = 1,5,40, and 120 bubbles with a given initial radius r, (initially
monodisperse size distribution). The physical domain can be decomposed in two main regions, the sus-
pension (melt + bubbles) that occupies the lower half and a free surface with a fictitious atmosphere in
the upper half. The presence of the free surface and atmosphere is required to allow for the suspension to
expand (increase in volume). Besides the top free surface, the whole domain is bounded by solid walls. In all
the following calculations, we use a constant decompression rate with a duration At (5000 time steps in our
simulation) so that

dp 3
(E)dec At = —Z pamb(t =0). (27)

For a single bubble, we should therefore expect the final volume of the bubble to be 4 times greater than
its initial volume, given that enough time is allowed for the bubble-melt system to relax to a new steady
state. In Figure 2, we show the evolution of a single bubble during a decompression experiment, where the
decompression lasts for half of the calculation time of 5000 time steps. Starting with N bubbles, each with
an initial volume V, and a volume of melt (incompressible and constant) V,,, we get by mass conservation
NV, 4 x NV,

NV, +V, — C4><NV0+Vm’
where C is the expansion factor and V,, can be calculated from the vesicularity ¢ of the suspension att = 0.
We can compare the value of C obtained theoretically with equation (28) with the ratio of final to initial sus-
pension vesicularity in our calculations. In Table 1, we use the initial volume fraction of bubbles to compute
the theoretical expansion factor and final vesicularity. These results are then compared graphically with the
time series of increasing vesicularity obtained numerically with our decompression model (see Figure 3). We
observe in all cases, even when coalescence is prominent (the run containing initially 120 bubbles reaches
a steady state with 29 bubbles), an excellent agreement between the numerical model and theory. Because
coalescence is not significant for the final steady state vesicularity of a decompressed suspension, we used
an arbitrary value for the constant ¢;;, which controls the amplitude of the disjoining pressure term. In the
following calculations, the coalescence rate becomes important and we will calibrate the disjoining pressure
constant value with laboratory experiments.

(28)
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Figure 2. Linear decompression of a bubble. The decompression phase lasts for 5000 iterations. Here only mechanical expan-
sion is allowed (no diffusion) and the bubble reaches its final expected size (see dashed line) after decompression. The oscillations

observed around the steady state are caused by capillary waves generated at the free surface by the growth of the bubble during the
decompression phase.

4.2. Growth of a Single Bubble

An empirical test for our model is to reproduce the qualitative features observed in other numerical models
and laboratory experiments during the growth of a single bubble by diffusion and expansion during a linear
decompression event. First, when the bubble is small and the diffusive flux of water to the bubble interface
can be neglected, the growth of the bubble is delayed [Lensky et al., 2004; Liu and Zhang, 2000; Prousse-
vitch et al., 1993a; Proussevitch and Sahagian, 1998; Sparks, 1978]. Lensky et al. [2004] showed that under this
growth regime (often referred to as viscous-limited growth regime), the bubble radius grows exponentially

and the argument of the exponential growth depends on the timescale for viscous relaxation t,;. and the
timescale for decompression t,.
R(t) t *2 tdec
=7 - — , 29
Rr’ exp < 2 tvis ( )
where t x= |dp/dt|t,
4
e = — (30)
P;
and
Pi
tgee = =7+ (31
" |dp/dt|

Here the subscript i refers to an initial condition (prior to decompression), p; the initial ambient melt
pressure, and u is the dynamical viscosity of the melt, assumed to be constant. In Figure 4, we show the
volume and radial growth of the bubble obtained with our model. The insets correspond to snapshots
taken at different times during the growth. We observe an early exponential growth stage that is consis-
tent with the time-delay process observed in other numerical models [Lensky et al., 2004; Liu and Zhang,
2000; Proussevitch et al., 1993a; Proussevitch and Sahagian, 1998]. As the bubble grows, the growth regime

changes and displays the usual sigmoidal radius growth observed in other models [Proussevitch et al., 1993a;
Proussevitch and Sahagian, 1998].

Table 1. Summary of Results From the Decompression of a Bubble Suspension

Nit=0) ¢({t=0) N(At) CTheory C Calculated ¢@(t = At)

1 0.019 1 4 4 0.076
5 0.0099 5 3.08 3.1 0.0308
40 0.077 27 3.27 3.273 0.252
120 0.22 29 242 2418 0.532
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0.6 ———— 5. Bubble-Bubble Interactions
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2 05f . 1 The interaction between bubbles in a sus-
% 0.4 SRR — pension is highly nonlinear and has been
E o5l || 5bubbles - neglected in existing bubble dynamics
S — 40 b“é{%?; models in physical volcanology. The focus
2 02rF |20 bubbles | of our model is to account for these nonlin-
S o1}t i 1 ear interactions between bubbles under a
@ o= = X X X range of realistic magmatic conditions. In
0 2x107 4x107 6x107 this section, we demonstrate the ability of
dimensionless time p, / dp/dt the model to treat bubble thermodynamic
Figure 3. Same exercise as for Figure 2 but with a different amount of bub- and hydrOdynamic interactions during dif-
bles. It is interesting to note that the runs at higher vesicularity hosted fusion (Ostwald ripening), deformation,
a large amount of coalescence, but it did not affect the accuracy of the and coalescence.

decompression scheme.

5.1. Diffusion and Ostwald Ripening

In a polydisperse bubble suspension diffusion coarsening, often referred to as Ostwald ripening, can lead to
the growth of large bubbles at the expense of smaller ones [Lautze et al., 2011], because the growth of large
bubbles is thermodynamically more favorable due to surface energy. A similar process is known to operate

during the growth of crystals in magmatic and high temperature metamorphic environments [Nemchin

et al., 2001; Park and Hanson, 1999].

This coarsening process was first recognized by Ostwald [1897], but it took about 60 years to establish a the-
ory that yields quantitative predictions. The physics underlying the coarsening is simple: because of surface
tension, small bubbles have a higher gas pressure than larger ones. In fact, assuming static conditions the
difference in pressure between two spherical bubbles with radius r, and r, is

1 1
Ap=p1—p2=26<———>. (32)
r'l r2

The pressure difference increases with bubble volume differences and surface tension. The diffusion of
dissolved water from a small to a large bubble is caused by the pressure dependence of the solubility

condition at the bubble-melt interface
C1=S\}pamb+2r_o— (33)
1
C, =5y /pos + 2Z. (34)
rZ

Ifr, < r,thenC, > G, and water will diffuse from the small to the large bubble, further increasing
the capillary pressure difference and the coarsening process. The development of analytical models with
predictive capabilities is, however, not simple.

a. b.
300 —————————————— 5 B v
L LB + i
250 H rak T | exply? tecisdd ——
5 . ° .§ 6 f“’f 4
200 [ +—
s 5
2 150} H T 4
> § g 4
100} : § St
Time-delay
ol
50
1
0 L 0 P S
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
time t* = Idp/dtl x t time t* = ldp/dtl x t

Figure 4. lllustration of the growth of a bubble by a combination of mechanical expansion and diffusion during decompression. (a) The
inset illustrates the size of the growing bubble and shows clearly the time delay caused by the viscosity of the ambient melt at the onset
of the growth. (b) A fit of our results with the exponential growth derived for early growth by Lensky et al. [2004] is shown.
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A major difficulty for modeling this process arises from the boundary conditions, the concentration of dis-
solved water changes over time and so does the position of the two boundaries as one bubble shrinks and
the other grows. The first predictive models were based on highly idealized bubble population statistics,
such as the LSW model developed by Lifshitz and Slyozov [1961] and Wagner [1961]. These models assumed
that the bubble remains spherical at all time and, more importantly, that the suspension is dilute so that
the interaction between bubbles could be replaced by a mean-field interaction. These models predict that,
during steady coarsening, the average bubble radius increases with time'/* for diffusion-controlled growth.
Recently, more sophisticated models of population dynamics emerged, like the model of DeHoff [1991]
where the mean-field approximation was replaced by a nearest-neighbor interaction. Theoretical models
of transient coarsening still require a large number of simplifying assumptions and a theoretical model that
allows to account qualitatively for Ostwald ripening processes remains challenging.

For magmatic suspensions, Mangan et al. [1993] and Mangan and Cashman [1996] discussed vesicle size
distributions (VSDs) in basaltic magmas, erupted either effusively or explosively. Although the impor-
tance of diffusive coarsening was not directly measured in the skewed VSDs, the faster diffusion and
also broader range of radii among coexisting bubbles make basaltic magmas more prone to efficient
diffusion coarsening.

Estimates of the duration for the diffusive exchange of water between bubbles separated by a melt film
was discussed by Proussevitch and coworkers, using some important assumptions such as steady state dif-
fusion and simple geometry [Proussevitch et al., 1993b]. Under these assumptions, they anticipated that
the radius of the shrinking bubble decreases with the square root of time. This model does not take into
account the change in film thickness that is expected to happen during the process. Lautze et al. [2011] pre-
sented laboratory experiments to study Ostwald ripening in magmas with different compositions (mafic
andesite to rhyolite). They showed that, in agreement with a multitude of other laboratory experiments, the
temporal evolution of the bubble’s radius expected from the LSW theory is not obtained. They concluded
that transient coarsening with widely variable growth rates was more susceptible to be relevant during fast
degassing events such as during the ascent of bubbles in a volcanic conduit.

Available bubble growth models in physical volcanology cannot account for diffusive coarsening, because
these models either assume that the suspension is monodispersed (no gradients of solubility) or because
they do not solve explicitly for volatile diffusion around individual bubbles [Gaonac’h et al., 1996; Toramaru,
1995; Yamada et al., 2008]. Recently, Yamada et al. [2008] expanded on the polydispersed model of Toramaru
[1995] and introduced a critical radius below which bubbles were made to disappear to the benefit of larger
bubbles. To a first order, they argued that the forced disappearance of bubbles smaller than this critical
radius could account for Ostwald ripening, but the process is not explicitly solved for. In realistic scenarios
at high vesicularity, it is likely that the coarsening of a volcanic foam can involve more than two adjacent
bubbles of different sizes.

Our model allows us to model diffusive coarsening, because we can solve explicitly for the dynamics of mul-
tiple bubbles with various sizes and for water diffusion from and to neighboring bubbles. In Figure 5, we
show an attempt of modeling Ostwald ripening, where two bubbles of different initial sizes (r, = 7 and

r, = 30 grid spacing) are initially separated by four lattice nodes. The large bubble is initially in chemical
equilibrium with the host melt. While the smaller bubble loses water over time by diffusion, the pressure
and temperature remain fixed during this run. Although a comparison of the model with an analytical or
asymptotical solution remains mostly qualitative, this calculation highlights the potential of the method

to resolve complex thermodynamical interactions between neighbor bubbles. As we expect, the total vol-
ume/mass of exsolved volatiles remains constant throughout the run (dotted line in the two upper panels),
but the volume of the small bubble decreases with time while the larger bubble grows.

Assuming steady state diffusion, bubble growth in melt has been shown to follow a parabolic growth rate
r? « t. Similarly, the diffusive exchange of water across a melt film separating two close bubbles of different
sizes is expected to yield a parabolic shrinking rate [Proussevitch et al., 1993b]

r—r o« (t—t,), (35)

where r, is the bubble radius at time t, < t. This scaling between the shrinking rate and time is valid mostly
for the early stage of the mass exchange, when the size of the small bubble has not changed significantly. In
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Figure 5. (a) Volume of each bubble during the mass exchange caused by Ostwald ripening between two bubbles (see evolution
below). (b) Volume change for each of the bubbles as function of time. Each bubble’s volume is normalized to its initial volume.

Figure 6, we compare the numerical results for the evolution of the small bubble size with the scaling above
and find agreement for the first stage of the calculation. The latter stage of the calculation is marked by a
faster shrinking rate that is caused by two effects. While the bubble’s volume decreases, the boundary of the
small bubble recedes faster than the large bubble boundary advances, because of the different surface to
volume ratios of the two bubbles. This leads to a change in film thickness that affects the idealized parabolic
shrinking law. The second effect is merely numerical; when the shrinking bubble becomes small, the spatial
resolution becomes more limited and the results less accurate.

5.2. Calibration of the Model for Coalescence With Laboratory Experiments

During bubble coalescence, a melt film separating the bubbles drains and shrinks until a critical
thickness (6, is reached and the film suddenly ruptures. Capturing the exact physics of this phe-
nomenon is impossible from the numerical point of view, because the complex dynamics in the film

occurs ultimately at scales significantly smaller than the effective radius of the bubbles (6

~ 1077 m),

crit

and the dynamics of the film rupture is much faster than the drainage and poorly constrained.
The model we propose offers two advantages over standard multiphase lattice Boltzmann models
where bubble coalescence occurs automatically when the two free surfaces approach each other
to within a computational grid cell. First, the mass conservation during the drainage of film fluid
is resolved locally to a subgrid-scale (equation (10)). Second, and most importantly, an additional
pressure term is introduced in the stress boundary condition at each free surface to account for

100000 ——————rrrry

numerical +

10000}  scaling

~ 1000

L L Lol L
1000 10000
time

Figure 6. Comparison between the numerical results for the small bubble radius
change with time. The early trend is in good agreement with a parabolic law, as

expected. See the text for more details.

M|
100000

the interaction between neighbor

free surfaces, the disjoining pressure
equation (14). The disjoining pressure
term is expected to become significant
for surfactant-rich interfaces, where
foams can become stable over much
longer timescales. We use ¢, as a free
parameter to account for the subgrid
effects of lubrication forces on the
stabilization of the film prior to rupture.

In order to calibrate the disjoining
pressure term, we designed the sim-
plest experiment that accounts for two
approaching and distinct free surfaces:
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Figure 7. Examples of sequences of photographs taken during the bubble rise and film drainage in two experiments and comparison
with snapshot from one of our numerical simulation (Figure 7c). The numerical simulation shows the typical results we obtain, the
bubble rises, reaches a steady velocity, and decreases quickly as it approaches the free surface and film drainage starts until it ruptures.
These calculations are used to constrain the disjoining pressure term over a range of Bond number by matching the duration of the film
drainage with corresponding experiments.

a bubble approaching and bursting at a free surface. Different flow configurations (shear flows) or different
regimes for the balance between hydrodynamic forces (presence of inertia at high Reynolds number) would
require different experimental studies to build a more general parameterization. For instance the pressure
at the free surface is fixed whereas for two colliding bubbles lubrication effect may become more impor-
tant during the deformation of the interfaces. In this study, we use the laboratory procedure described in
Nguyen et al. [2013], where air bubbles are injected into silicon oil (using a range of oil viscosity) and rise to a
free surface. We used these experiments to calibrate the disjoining pressure dependence on the Bond num-
ber Bo = ApgR?/c. Figure 7 shows a visual comparison between two selected experiments and a numerical
calculation with our free surface model. The duration of the film drainage between the bubble and the
free surface was measured over a range of bubble radii. In the experiments, the flow regime is viscous, i.e.,
inertial forces are negligible. The reader is referred to Nguyen et al. [2013] for a thorough description of

the experimental setup. The experiments revealed the existence of two regimes of film drainage at low Re,
depending on the balance between buoyancy and surface tension stresses (Bond number). At Bo < 0.25,
in the capillary-dominated regime, the film drainage is caused by surface tension, and the characteristic
timescale for drainage was found theoretically and experimentally to be

)
t=Cln <5_> KR (36)

crit o

where ¢ is the surface tension between the two immiscible fluids, R the effective bubble radius, u the
dynamic viscosity of the ambient fluid, §, the initial film thickness (before drainage), and C, a constant
which value was found experimentally to be about 20 [Debregeas et al., 1998; Nguyen et al., 2013]. The
ratio 6,/6.,;, was estimated from natural samples to be of the order of 10% to 10°, as measured on natural
samples with scanning electron microscopy or interferometry, for example [Klug and Cashman, 1996;
Debregeas et al., 1998].

As buoyancy stresses become more important (Bo > 0.25), the drainage regime is governed by the balance
between buoyancy and viscous stresses. The drainage time is then

P u C,
t =ClIn(=)-—"—="-Bot, 37
‘ ’ n(écrit> ApgR  C, ol 7

[«

HUBER ET AL.

©2013. American Geophysical Union. All Rights Reserved. 14



@AG U Journal of Geophysical Research: Solid Earth 10.1002/2013JB010419

= Bo=1 where Ap is the density difference
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g ef i and 5, respectively.
[5]
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_§ 60 |- Rl - numerical calculations, a buoyant bub-
'DQ_ 50 - : ; ; n— ble'ivs initially emplaced about 10 bubble
radii below the unperturbed free sur-
time v t/R?

face. We compute the bubble’s ascent,
Figure 8. Vertical position of the bubble center of mass as function of time deceleration as it approaches the free

for Bo .:'1 and two dlﬁergnt choices .of disjoining pressure constant ¢;,. The surface and record the drainage time
longetivity of the bubble increases with ¢,,. The crosses mark the end of the film ]
drainage and the coalescence of the bubble with the free atmosphere. leading to the bubble rupture at the

surface. The drainage time is defined
similarly between the experiment and the calculations, it consists of the time interval between the sharp
slowdown of the bubble as it approaches the free surface (the center of mass decelerates from a velocity
close to the free ascent velocity for the bubble to rest) and the rupture of the film when it reaches its critical
thickness §,

crit®

The disjoining pressure defined in equation (16) includes two constants ¢;; and the range of the interaction
between free surfaces d,,... The latter was fixed to a distance of three grid points, as in the study of Koerner
et al. [2005]. We decided to keep d,,,. fixed and calibrate the disjoining pressure by varying the constant ¢;,
so as to reproduce the dimensionless drainage time observed experimentally over a range 0.1< Bo < 4,
which overlaps both capillary- and gravity-driven drainage regimes. As expected, an increasing magni-
tude for ¢ yields a longer drainage time, as shown in Figure 8 at Bo = 1. The bubble slowing down as it
interacts with the free surface and the subsequent film drainage leading to the bubble’s rupture are clearly
distinguished.

We repeated similar calculations over a range of Bo at different values of ¢, (Figure 9). We ran each calcula-
tion for about 200,000 iterations (in all case much longer than the expected experimental drainage time) to
map the regime where coalescence occurred. We found that there is a critical disjoining pressure constant

value where the two bubbles remained stable and that this value depends on Bo.

The experimental normalized drainage time was found to satisfy (Figure 10).

t i . =
d_{1 if Bo<0.25and x = ¢ 38)

t, 1ifBo >0.25andx =g.

X

Figure 10b shows the best fit for ¢;; to match the experimental results. Because of the two drainage regimes
(below and above Bo = 0.25), the calibrated value for ¢;; becomes

¢ (Bo) = 1.57 x 103Bo + 1.59 x 10™° if Bo < 0.25 (39)
T 1,27 x 10%Bo*! + 6.6 x 107 if Bo > 0.25.
0.007 | .
Bubble rupture  +
0006 & Cyy= 00T e . 1 The correlations between ¢, and Bo established
0.005 - - from the experiments of Nguyen et al. [2013]
0.004 - . provide our model with an accurate treat-
=] . .
o 0003 | | ment for the duration of the drainage of melt
' ¢ films between bubbles under capillary- and
0.002 o gravity-dominated regimes. Coalescence has
0.001 |- ~ i ; - deep implications for the mechanical behavior
0 ¢ i . of a suspension and by extension for erup-
0.1 1

Bo tion dynamics. Our model is the first bubble

. o ) o dynamics model for magmatic suspensions to
Figure 9. Regime diagram that shows how increasing disjoining pres- r h lex d . iated
sures retard or sometimes prevent bubble rupture. All calculations account for the complex dynamics associate
presented here were run for a maximum of 200,000 iterations. with coalescence. The subgrid-scale physics of

HUBER ET AL.

©2013. American Geophysical Union. All Rights Reserved. 15



@AG U Journal of Geophysical Research: Solid Earth

10.1002/2013JB010419

a. b.
100 : T T T 0.004 r 1 T T
te=tc L=t 0.0035 |-
10fF o E
0.003 |- o
1 0.0025 [ |10
@9 3
< og0 & o002 |T
01} cb% o
% 0.0015 | .
o) 5 oO “°,~
001 k o ‘® | 0.001 Numerical ~©
- o s -3 -5
¥ 0.0005 172" Cr=1.57x10"° Bo + 1.59x10
o - 45 21 -4
Cpy=1.27x10"* Bo?"+6.6x10™ +-+--+-
0.001 L L " L 0 ) ) ) )
0.001 0.01 0.1 1 10 100 0 1 2 3 4
Bo Bo

Figure 10. Functional form of the experimentally calibrated disjoining pressure—Bond number function. At Bo < 0.25 the trend is lin-

ear, it becomes nonlinear above 0.25. See the text for a more detailed discussion. (a) We show the same data set twice, with the drainage
duration normalized first with the capillary-driven drainage timescale (red circles) and with a buoyancy-driven drainage timescale (green
squares). (b) The best fit values for the disjoining pressure constant ¢, are shown for the whole range of Bond number. The two trends

represent the two regimes observed in Figure 10a.

film drainage is parameterized and inserted as a pressure correction term through the disjoining pressure
constant.

In the near future, we plan to conduct similar type of combined experimental-numerical effort to constrain
the dependence of the disjoining pressure IT on the capillary number (shear to surface tension stresses). In
the latter case, bubble deformation and its feedback into capillary stresses can significantly impact the film
drainage rate during coalescence.

5.3. Sheared Suspensions

The effect of dispersed bubbles on the rheology of magmas has been studied theoretically and experimen-
tally [Manga et al., 1998; Manga and Loewenberg, 2001; Stein and Spera, 1992; Stone, 1994; Taylor, 1932].

It was found that the presence of bubbles induces a shear thinning behavior, i.e., the effective viscosity
decreases with increasing strain rates. Bubbles influence on the effective viscosity are strongly controlled
by the capillary number. At low Ca, when bubbles remain spherical because surface tension dominates the
force balance at the scale of the bubbles, the effective viscosity is greater than for a melt with no bubbles.
At large Ca (> 0.1), when bubbles can accommodate a substantial part of the deformation in the suspen-
sion, bubbles decrease the effective viscosity of the mixture. The importance of the suspension vesicularity
has also been studied extensively and it was shown that the viscosity of the suspension increases weakly
with vesicularity, at least in the limit of low vesicularity studied (< 10% in most cases). Here we discuss the
effect of a constant imposed shear rate on a suspension, and more specifically, we focus on the deformation
and orientation of these bubbles in response to an imposed simple shear.

The evolution of a sheared suspension is important because the rheology of the mixture is sensitive to the
bubble size distribution, i.e., small bubbles can increase the effective viscosity of the mixture because of
their resistance to deformation (low Ca), whereas large bubble will tend to accommodate most of the strain
and therefore reduce the effective viscosity of the suspension. In this study, we explore the behavior of sus-
pension over a range of imposed shear rates (we fix the initial bubble size, and hence the initial capillary
number), but we do not account for degassing. The aim of these calculations is (1) to validate our bubble
dynamics calculations under shear conditions with published theory and experiments for a single bubble
and (2) to investigate the role of bubble interactions on the distribution of bubble shapes and orientations.

We present two sets of calculations. First, we compare and validate our numerical results for the steady
shape and final orientation of a single bubble under simple shear conditions with theoretical and exper-
imental results obtained by Hinch and Acrivos [1980], Rallison [1980], and Rust and Manga [2002a]. The
second set of calculations aims at characterizing how the presence of other bubbles with the same size in
a monodisperse suspension affects the distribution (average and standard deviation) of deformation and
orientation in a suspension.

The LBM offers a very convenient approach to impose velocity boundary conditions on solid sites. We use
the boundary condition of Zou and He [1997] to impose a velocity (U,,, 0) at the lower wall and a standard
bounceback of the distribution for the no-slip boundary condition on the top wall (see Figure 11). The
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Figure 11. lllustration of the measurements used to characterize the bubble final orientation and shape. The actual bubbles shown here
come from two calculations with Ca = (left) 0.2 and (right) 0.5.

missing distribution in melt sites adjacent to the lower boundary (moving wall) are f,, f;, and f;, i.e,, the
distributions j with ¢, - n, > 0, where n, is the upward (+y) normal to the wall

p=fo+f+f+2(f+f+f,) (40)
f,=f, 41)

1 oU,
f5=f7+§(f3—f1)+T (42)

1 U,
f6=f8+5(f1—f3)— = (43)

The side boundary conditions are periodic. The capillary number, Ca, which represents the ratio of viscous
to surface tension stresses is defined as

_pvU,r

" Ho ’

where r is the initial bubble size, p and v refer, respectively, to the melt density and kinematic viscosity
[Stone, 1994]. If the Capillary number is identical for each bubble initially, coalescence will lead to a polydis-
perse bubble size distribution and therefore lead to a range of Ca in the suspension. In all our calculations,
the domain is bounded on the sides by periodic boundaries and the whole system is oriented perpendicular
to the direction of gravity (no buoyancy effect).

Ca (44)

If the viscous stresses are negligible with respect to surface tension stresses (Ca < 1), the bubble remains
undeformed, that is spherical, and remains invariant under rotation. With increasing Ca, the bubble starts
to deform and loses its spherical symmetry. The bubble therefore rotates until the drag force applied by
the melt to the bubble balances surface tension. Note that we only consider flows where inertial forces can
be neglected. The elongation of the bubble, once it reaches a steady shape, is often characterized by the
dimensionless quantity

_I-b
=5
where [ and b are, respectively, the long and short semiaxis of the elliptic or pseudoelliptic final shape [Hinch
and Acrivos, 1980; Rust and Manga, 2002a]. It is easy to see that 0 < D < 1, where the two bounds hold,
respectively, for an undeformed spherical bubble (D = 0) and an infinitely stretched bubble. Finally, the
angle between the long axis of the bubble and the direction of the shear is defined as 6 (see Figure 11 for an
illustration of these definitions on results from calculations conducted at Ca = 0.2 and 0.5).

D (45)
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5.3.1. Validation of the Model for the Deformation of a Single Bubble Under Simple Shear

At moderate Ca, i.e, Ca < 103 such as those expected under most magmatic conditions, bubbles are
expected to reach a steady configuration and not break into smaller bubbles [Bentley and Leal, 1986; Hinch
and Acrivos, 1980]. Moreover, at low Ca, i.e., Ca < 0.5, the deformation of the bubble follows

D~ Ca (46)
as shown by Taylor [1932]. Under the same conditions (low Ca), the orientation of the bubble reaches

0= % — 0.6Ca. (47)

At greater Ca (> 1), Hinch and Acrivos [1980] derived theoretically that, once the bubble reaches a steady
shape, the ratio of the elongated semiaxis of the bubble to its initial radius R follows

Lo 345ca, (48)
R
which, assuming a 2-D elliptical bubble, yields
11.9Ca -4
~ 49
11.9Ca+4 “9)

Similarly, they showed that, for large Ca, the orientation of the bubble at steady state is given by
6 = arctan (0.359Ca"**). (50)

Rust and Manga demonstrated the validity of these relationship experimentally and pinned the transition
from low to high Ca regimes to occur around Ca = 0.5.

To validate our model against these experimental and theoretical results, we ran simple shear calculations
in a 200 x 100 grid points domain over a range of shear rate conditions (0.1 < Ca < 4). For each run,

the bubble shape and orientation were measured at steady state. Our first test consists of a comparison
between our numerical results, theory, and the laboratory experiments of Rust and Manga [2002a] for the
shape and orientation of the bubble across a range of Ca. Figure 12 shows a very good agreement between
both data sets and with equations (46) and (49). It is important to remember, however, that our calculations
are limited at this stage to 2-D. As such, some of the small-scale discrepancies could be associated with the
planar velocity field imposed by the 2-D symmetry in our calculations. The final orientation of the bubble in
our simulations agrees very well with the experiments of Rust and Manga [2002a] and the scaling relation-
ships presented in equations (47) and (50). We also find the transition between surface tension to viscous
stress-dominated regime to be around Ca = 0.5, similarly to Rust and Manga [2002a]. Finally, the relation-
ship between the deformation D of the bubble and its orientation 6 also follows the experimental results of
Rust and Manga. This gives us good confidence that our model captures accurately the stress balance at the
interface between a bubble and the ambient melt.

5.3.2. Deformation and Orientation of a Monodisperse Suspension of Bubbles

We conducted similar simple shear flow calculations with a suspension of 20 bubbles with an initial radius
of R. The initial position of each bubble was set randomly and we repeated each calculation at the given
choice of Ca 3 times to assess the variability of our results with respect to random initial conditions. The goal
of these calculations was to study the effect of other bubbles on the distribution of 6 and D values over a
range of capillary numbers and contrast the results with those for a single bubble.

In a suspension, the existence of a steady state is not guaranteed, especially when Ca becomes large,
because shear promotes coalescence [Okumura et al., 2006, 2009]. Coalescence affects the effective Ca of
the suspension, as the average bubble radius increases at the detriment of the bubble number density.
Therefore, instead of focusing on the steady deformation and orientation of the bubbles, we consider their
temporal evolution parameterized in terms of the accumulated strain (¢ = U, t/H) and measure the distribu-
tion of D and 0 at a few discrete values of €. This also allows us to compare the behavior of the suspension
under different shear conditions. Whenever possible, we considered only calculations where coalescence
was minimal and where the effect of bubbles on neighbor bubbles was mostly limited to the deformation
of streamlines.
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Figure 12. (a) Deformation of streamlines by the bubble (Ca = 0.5). (b) Results for the steady bubble shape D as function of Ca in our simple shear calculations. The dashed lines
represent the theoretical trends and match closely the experimental results of Rust and Manga. (c) Same for 6 and (d) for the correlation between the bubble’s orientation and
elongation.
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Figure 13. (a) Evolution of average deformation (D), of bubbles with strain accumulations under four different Ca (0.1, 0.25, 0.5, and 1).
(b) Evolution of average orientation (6),, of bubbles under the same Ca numbers as Figure 13a. Standard errors for each data points
are also given in 13a and 13b. The solid lines at the right side mark the steady state (D), and (@), theoretical values for single bubble
at specific Ca number. (c) Snapshot of multibubbles distribution and the ambient melt velocity field around bubbles for Ca = 0.1 at

€ =~ 6.923. (d) Same as Figure 13c except for Ca = 1 at € &~ 6.923. The wall velocity %4 =0.0011731 for Ca = 0.1, and %4 =0.011731
for Ca=0.1.
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Figure 14. Evolution of average bubble shapes (D), and average bubble inclination angles (8}, versus accumulated strain € with (a
and b) Ca =1 and (c and d) Ca = 0.1. The black solid lines at the right side mark their corresponding theoretical values for single bubble.

In each panel, data points of different runs are marked by “x” in red, “0” in green, and "’ in blue.

un

In Figure 13, we show the evolution of the average deformation (D), and average orientation (@),, of the
suspension over accumulated strain e for Ca = 0.1, 0.25, 0.5, and 1, where

Np

(D), = Nl >.D, (51)
b k=1
1

O)n =5 X 0 (52)
b k=1

and N, is the total number of bubbles. Figures 13c and 13d illustrate the state of the suspension, the color
coding shows the melt velocity at e ~ 6.923 for Ca = 0.1 and Ca = 1, respectively. The suspensions reach a
quasi-steady state after ¢ ~ 2-3 (Figures 13a and 13b). Steady state is defined as the state where the average
bubble orientation and deformation in the suspension fluctuate around a constant value (D) and (6). At
low Ca (< 0.5), when capillary stresses dominate, the steady state is characterized by (D), > D,, where m
denotes multiple bubbles and s stands for a single bubble. At higher Ca, when viscous stresses dominate,
we observe the opposite, which is (D),, < D,. The average orientation (@), is greater than 6, at high Ca. For
Ca < 0.5, we do not observe a clear trend for the bubble’s orientation as function of Ca and (9),, seems not
to have reached a well-defined steady state.

Because the number of bubbles N, = 20 used in these calculations is modest and their initial spatial dis-
tribution are random, tested the reproducibility of our results by running three realizations for each set

of calculation, each with different initial positions. A subset of these calculations (Ca = 0.1 and Ca = 1) are
shown in Figure 14. For all Ca, the three realizations share similar trends for the average deformation and ori-
entation of bubbles. The results are therefore reproducible and are expected to remain relevant even when
starting with different spatial distributions of bubbles.

Our results for (D),, suggest that bubbles deform less in a suspension than a single bubble at Ca above 0.5,

whereas the deformation in the suspension exceeds predictions from a single bubble at Ca < 0.5. Bubble

volume fraction ®, which is fixed in our suspension calculations at ® =~ 0.14, as well as bubble shape and

orientation can affect the effective Ca” of bubbles in a suspension by influencing the effective viscosity v* of

the multiphase mixture. From equation (44), the effective Ca” of bubbly suspension can be defined as
pviU,r

Ca" = . 53
@ Ho 53)
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Previous studies have shown that, at low Reynolds number (Re), suspensions with Ca in the range of (0, O(1))
are shear thinning, i.e,, the effective viscosity v* decreases when the strain rate ¢, and therefore, Ca increases
[Frankel and Acrivos, 1970; Han and King, 1980; Manga et al., 1998; Rust and Manga, 2002b]. To characterize
the rheology of a suspension, it is common to use the relative viscosity v,, defined as the ratio of v* to the vis-
cosity of the ambient melt v. Rust and Manga [2002b] used laboratory experiments to quantify the decrease
in relative viscosity of suspensions with increasing Ca. The relative viscosity is greater than unity at low Ca
(0 < Ca < Ca,), where the critical value Ca, is estimated to be around 0.5-0.7 [Rust and Manga, 2002b].

At low Ca, bubbles remain spherical and the effective viscosity increases with @, because the deformed
streamlines provide a net increase of viscous dissipation, which is not compensated by the increasing vol-
ume fraction of quasi inviscid bubbles [Manga et al., 1998]. On the other end, at high Ca, elongated bubbles
tilt almost horizontally providing less resistance to the flow of ambient melt. In addition, deformed bub-
bles can slide over each other, which, because of their low viscosity, helps to reduce viscous dissipation. Our
results are in excellent agreement with these observations.

6. Conclusions

We have developed a new bubble growth model in magmas, which accounts for bubble-bubble interac-
tions in a melt at rest or during flow. It is designed to obtain a more accurate description of the dynamics
of bubbles during magma ascent. The model is based on the lattice Boltzmann model for flows with free
surfaces and augmented with a decompression algorithm, to model the growth of bubbles by mechanical
expansion and diffusion. The model was validated against analytical solutions and published results from
bubble growth studies. Our new model constitutes a significant advance in our ability to model magmatic
processes, because it accounts for the complex nonlinear hydrodynamic interactions between bubbles
under different flow regimes.

We showcased the capabilities of our new model by investigating the complex interactions between bub-
bles of different sizes during Ostwald ripening and during shear flow. The model reproduces expected
scalings for Ostwald ripening, demonstrating the ability to model mass transfer of dissolved volatiles
between bubbles of different sizes. The shear flow calculations for a single bubble accurately reproduced
existing theoretical and empirical results, confirming the accurate representation of viscous coupling
between bubble and melt. Shear deformation of a suspension resulted in that a smaller average bubble
deformation than for a single bubble when Ca > 0.5 and the opposite for Ca < 0.5.

Constraining the dynamical conditions in a volcanic conduit from erupted pumices does require models
that can solve for the complex viscous coupling between the melt and exsolved gas phase. This model
will enable us to study how bubble deformation affects growth by exsolution under shear flow conditions,
which is not possible with the existing bubble dynamics model in volcanology. Bubble deformation leads
to a greater interfacial area for the melt and exsolved volatiles which can promote faster degassing than
expected from the models of Gaonac’h et al. [1996], Lensky et al. [2004], L'Heureux [2007], Lyakhovsky et al.
[1996], Proussevitch et al. [1993a], Proussevitch and Sahagian [1998], and Toramaru [1995]. Our new model
will also offer the opportunity to quantify the resultant drag and lift forces between a suspension and the
melt in shear flow conditions, the dependence of the coalescence rate in a suspension as function of shear
at constant and time-dependent (growth) vesicularity and introduce water-dependent viscosity and diffu-
sivity. The ultimate objective behind the development of these numerical investigation of bubble dynamics
is to provide conduit flow models with a parameterization of bubble-melt interactions that covers a wide
range of dynamical conditions and vesicularity.

Notation
A surface area of gas-melt interface surfaces.
Bo Bond number.
Co amplitude of the disjoining pressure.
Cy lattice speed in LBM model.
C concentration of dissolved water content.
G concentration of dissolved water content at the bubble-melt interface.
range range of the disjoining pressure.
d,, distance between interacting interfaces neighbor objects.
D parameter of deformation of bubbles.
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D0 diffusion coefficient of the dissolved volatile.
e lattice velocity in i direction of LBM model.
f, distribution function in i direction of D2Q9 model.
F, body force in i direction on f..
g distribution function in i direction of D2Q4 model.
G Gibbs free energy.
H distance between two walls in simulation model of shear effect on bubbles.
n moles of gas molecules.
p, gas pressure.
r bubble radius.
R ideal gas constant.
S Sieverts constant.
t time.
Ciec decompression timescale.
t viscosity timescale.
t. drainage time (Bo < 0.25).
t, drainage time (Bo > 0.25).
t, experimental normalized drainage time.
T temperature.
u, bottom wall velocity in simulation model of shear effect on bubbles.
4 gas volume.
w, lattice weights in LBM model.
1) critical thickness of the melt film between bubbles.
5; initial melt film thickness.
A, density difference between the bubble and the ambient fluid.
€ strain.
é strain rate.
K curvature of gas-melt interface.
u dynamic viscosity.
v kinetic viscosity.
I disjoining pressure.
p density.
o surface tension.
T relaxation time for melt in LBM model.
Tg relaxation time for gas in LBM model.
0 orientation of bubbles, angle between the long axis of bubble and the shear flow.
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